The first 100 years and the next 50 years? of Nuclear Science
A few notes in honor of Robert Janssens

Alex Brown, September 19, 2025



1976 Summer School in Varenna, Italy

Arthur Kerman

Ricardo Broglia

Aage Bohr (*)

Igal Talmi (100 this year)
Ben Mottelson (*)
Hobson Wildenthal

Ray Satchler

* 1975 Nobel Prize for the
nuclear collective model




Matan Talmi's Post

SV Matan Talmi —
” 7mo - Edited

My grandpa, Igal Talmi, turned 100 today! @ Jan 31 ’ 2025

A nuclear physics pioneer whose breakthroughs in nuclear shell theory hold strong till this
day, and as important - a role model of knowledge, optimism and humility who continues to
inspire generations of fellow scientists, family and anyone lucky enough to cross his path.

Article in Hebrew, English wiki page in the comments
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1925 Quantum Mechanics

1925 Pauli invents the Pauli Principle

1928 Dirac predicts anti-particles

1928 Three elementary particles - proton, electron and photon

1928 Two types of fundamental interactions - Coulomb and Gravitational *

The quantumlaw of matter

Nature | Vol 639 | 13 March 2025

From strange beginnings, the Pauli exclusion principle has become
agift thatkeepson giving. By Olival Freire Jr and Thiago Hartz

v
* Albert Einstein, “Einheitliche Feldtheorie von Gravitation
und Elektrizitat.” Preussische Akademie der Wissenschaften,
Phys. math. Klasse, Sitzungsberichte 1925, 414-419.
seeTilman Sauer, https://philsci-archive.pitt.edu/3293/1/uft.pdf



Michael Thoennessen: Timeline of the Discovery of Nuclides
. sl/frlb msu. edu/public/nuclides

.:.n'-' Radioactive decay
|“ : B Mass spectroscopy
P
o The Discovery
r,.r" of Isotopes
‘-“F A Complete Compilation



https://frib.msu.edu/public/nuclides

1932 Chadwick discovers the neutron

1932 The nucleus is made up of protons and neutrons

KueENziG Books

IMPORTANT BOOKS IN SCIENCE, TECHNOLOGY AND ENGINEERING
ARTIFACTS OF SCIENCE AND TECHNOLOGY

"During the 1930s, Hans Bethe made many of his major contributions to
nuclear physics. The first was a series of three lengthy papers in the Journal
Reviews of Modern Physics inj1936 and 1937 domprising almost 500 pages of
a comprehensive review of experimental and theoretical nuclear
physies...The three papers...were so comprehensive that together they
became known as the|Bethe Bible cind 50 years later [were] republished as a
book by the American Institute of Physics...The significance of his work in
theoretical physics was underscored by Professor O. Klein...[who mentioned
Bethe's Bible] at the presentation of the Nobel Prize to Hans Bethe on
December 11, 1067. (see L'Annunziata, Radioactivity, Elsevier, 2007)

ITEM SOLD

Many energy levels were
Observed

1936 Bethe Bible
Bethe provided the first

models for nuclear levels
densities.




Fast forward for particle physics

Over 100 hadrons (baryons and mesons) discovered.
Most results explained by 23 elementary particles plus
The “standard model” equations with 26 constants.
Who would have predicted this?

Quarks and Leptons have anti-particles (Dirac)

What is next? Standard Model
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Fast forward for nuclear physics

About 3000 nuclei

Made up of protons and neutrons
Who would have predicted this?
What is next?

" Radioactive decay

B Mass spectroscopy

“ Light particle reactions
Fission

M Spallation

B Fusion/Transfer

M Projectile fragmentation/
Deep inelastic reactions )



https://frib.msu.edu/public/nuclides

~ 0O

" Radioactive decay
B Mass spectroscopy
" Light particle reactions



https://frib.msu.edu/public/nuclides

1949-1950 The nuclear shell model was discovered
— magic* numbers (2, 8, 20, 28, 50, 82, 126)

1963 Nobel Prize, Mayer and Jensen

Binding energies
Excited states energies
Energies of 2* state

J™ values

* It was Eugene Paul Wigner who coined the term
‘magic number”. Steven A. Moszkowski, who was a
student of Maria Goeppert-Mayer, in a talk presented

at the American Physical Society meeting in Indianapolis,
4 May 1996 said: “Wigner believed in the liquid drop
model, but he recognized, from the work of Maria Mayer,
the very strong evidence for the closed shells.

It seemed a little like magic to him, and that is how

the words ‘Magic Numbers’ were coined”.

Maria Goeppert Mayer

single — particle energy (MeV)
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Filling of lowest energy
quantum states according
to the Pauli principle *

Only one type of fermion
can occupy a given
quantum state

* This is the dominant configuration of
the 208Pb ground state. In addition
there are an infinite number of smaller
components made up of configurations
where the nucleons are excited from
filled orbitals to higher orbitals.



The nuclear chart can be divided into “territories” where only a few |
orbitals dominate the low-lying structure in a given mass region
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The nuclear chart can be divided into “territories” where only a few |
orbitals dominate the wavefunctions of low-lying states

50 [T The f;,, shell and many other
- = :;_‘g simple orbital configuration
L o examples started in the 1950s
40 - 2.0 1 | by Talmi et al.
g - e - | 1963 book defined much of
5 [ H05 1 | the terminology we use today.
c 3O = |
o
= 3 1 | The “p” shell in the
‘ED 20 — — | 1960s by Cohen-Kurath
= L 4 | is now replaced by ab-initio
3 / sd 1 [ methods
10— d o n
F ' 1 | The “sd” shell started in the
o b 10T | 1970s by Brown-Wildenthal
0 10 20 30 40 20 60 | is still providing unique

Number of neutrons predictions




With islands of inversion, more orbitals must be considered and the
“territories” enlarged — to be enlarged over the next 50 years.
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With the shell-model we have a language within which one can understand everything at
many levels of detail

Provides basis states for all ab-initio models (e.g. harmonic oscillator)

We have a top-down language in which everything can be discussed

top down (models)

?77?77

v 2020

1970 ‘[
bottom up (ab initio)

protons, neutrons
2N, 3N interactions

quarks and gluons
777

Next 50 years — can nuclear properties be calculated in a basis that
has nothing to do with the shell model?

Calculate all energies to an uncertainty of 1 MeV, 100 keV, 1 keV?



An early joint paper

PHYSICS LETTERS B

ELSEVIER Physics Letters B 546 (2002) 55-62

www.elsevier.com/locate/npe

Structure of °2°4Ti and shell closures in neutron-rich nuclei
above 48Ca

R.V.F. Janssens **, B. Fornal®, PF. Mantica®¢, B.A. Brown <, R. Broda®,
P. Bhattacharyya®, M.P. Carpenter®, M. Cinausero ¢, P.J. Daly, A.D. Davies “¢,
T. Glasmacher ©<, Z.W. Grabowskif, D.E. Groh*¢, M. Honma®, F.G. Kondev?,
W. Krélas®, T. Lauritsen®, S.N. Liddick *¢, S. Lunardi‘, N. Marginean ¢, T. Mizusaki/,
D.J. Morrissey “4, A.C. Morton®, W.F. Mueller®, T. Otsuka*, T. Pawlat®,
D. Seweryniak #, H. Schatz <, A. Stolz*<, S.L. Tabor!, C.A. Ur!, G. Viesti’,
[. Wiedenhover *, J. Wrzesiniski®

A drgonne National Laboratory, Argonne, IL 60439, USA



Experiment and theory working together

60 R.V.F. Janssens et al. / Physics Letters B 546 (2002) 55—6
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Fig. 3 Comparisons between shell-model calculations with the GXPF1 Hamiltonian and data for the even—even 50-54Ty 5 isotopes. All the data
for Ti are from the present experiment as are those for / = 8 in 32T, The width of the arrows is proportional to the measured intensities. The

energy uncertainty for the strongest transitions in each nueleus 1s 0.2 ke'V, and inereases to 0.6 ke'V for the weakest lines.



Experiment and theory working together

Empirical shell-model Hamiltonians rely on a subset of energy data to determine
the evolution of the single-particle energies and to constrain some two-body matrix
elements

The GFPX1A Hamiltonian obtained in this way was used to predict
the yrast spectrum of Ti that agreed with new data om 2002.

The agreement was good enough to use theory to suggest J-pi assignments

But are we sure?

at 5111, 5459, 5904, 6187, and 6432 keV. All spin as-
signments are tentative as no angular correlation in-
formation is available due to the weak intensity of
this reaction channel. However, the fact that the reac-
tion feeds yrast states preferentially. together with the
close correspondence between established and calcu-
lated levels (see discussion below) allows one to assign
spins with confidence along the sequence.
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Latest Hamiltonian in the fp model space.

Up to 7 MeV about 100 more levels predicted.
— for most these the only thing of interest is the level density.

We have great confidence that they are there (within a few hundred keV)



Janssens' Titatium Jig
Alex Brown, September, 2025
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Let’s see if the theory has changed — °°Ti

1
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Negative-parity states need a model space that goes beyond fp



Let’s see if the theory has changed — >°Ti

1

E (MeV)
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But more orbitals need to be added (d5.p1,f5,99...)



...... the latest collaborations on 4Ge and %8Zn

PHYSICAL REVIEW C 108, 024315 (2023)

Testing shell-model interactions at high excitation energy and low spin: Nuclear resonance

fluorescence in *Ge
S. R. Johnson®."“2* R. V. F. Janssens®,"2 U. Frirn::ll'l-(}.':ly:er,'°2*+ B. A. Brown®.>? B. P. Crider®,” S. W. Finch® %2
Krishichayan 52D, R. Little,""2 S. Mukhopadhyay JFE.E. Peters®,” A. P. D. Ramirez®.”% J. A. Silano®.?
A. P. Tonchev.,>® W. Tornow ©,%2 and S. W. Yates®’

From the Ground State to the Particle Emission Threshold:
Nuclear Resonance Fluorescence in 68Zn - Thesis of Samantha Johnson

Uses nuclear resonance fluorescence (NRF) with the
High-Intensity Gamma-Ray Source (HIyS) Facility to select 1- and 1+ states.




Good news — the number and spacing of low-lying levels in
the jj44 model space (05, 1p3, 1p1, 0g9) is OK
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Not such good news
the B(M1) strength also requires the 0f7 orbital
one needs the (0f7, 0f5, 1p3, 1p1, 0g9) model space

Results from (0f7, 0f5, 1p3, 1p1) model space

— jund5
— jjddb
1200 -
exp (upper limit)
m exp(lo)

200 Fﬁ

3000 4000 5000 6000 7000 8000 9000
Energy (keV)




Bad news:

B(E1) = 0 in the jj44 (0f5, 1p3, 1p1, 0g9) model space



Good news:

B(E1) = 0 in the jj44 (0f5, 1p3, 1p1, 0g9) model space

Experimental B(E1) on the order of 0.0001 WU ??

Is,0(M1) (eV b)

Is,0(E1) (eV b)




Vertical vs Horizonal Shell Model Truncations

21 1206 2p1
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j4 — horizontal for low-lying
collective states (with effective
charge).

For full B(M1)

For full B(E1)

At higher energy we are
interested in levels density and
gamma strength functions

For complete E2 and
deformation (no effective
charge)



PHYSICAL REVIEW C 112, 024302 (2025)

S. K. Tandel

1.2

Core-excited microsecond isomer in 2’ Pb

JPC.S
8 M. P. Carpenter.® T. Lauritsen,® and D. S«

'S, G. Wahid®.2 N. Krishnadev
R. V. E Janssens

_ > M. Hemalatha,* Subhrajit Sahoo
57 E G. Kondev

TABLE III. Energies and spins of levels in ’Pb from ex-
periment and shell-model calculations (see text for details). The
predicted probabilities for the main component of the configuration
are listed for each state.

Ir Configuration  Probability (%) Eep (keV) Esm (keV)
21727 v(ifs)s. pm 20/2) 61.4 4711 4687
23/27 v(izp: Pi- 85)2) 69.2 4867 4840
23/2; v(iszps fos 80)2) 30.1 5279 5196
25/27 (i), fs,,,,gg,) 68.9 5337 5258
27/27 v(if)s. fw, go/) 93.7 5660 5488
29/2+ p(f;;ﬁ pm Jis) 73.4 6043 6299
31/2% v(isz). foe Jisp) 78.6 6739 6618
33/2% (i3 88)2) 73.6 7725 6821
35/2%  w(izn. i) 91.8 8091 7326
39/27 w(ia lsp) 90.4 8835 8255
E. K. Warburton and B. A. Brown, Phys. Rev. C 43, 602

(1991).
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The observed states in 297Pb
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Why do the single-particle energy (SPE) gaps change?
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Nuclear Structure from JPG paper
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400 kW

FRIB 2024: 10 kW
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Atomic Number

20 40 80 80 100 120 140
Meutron NMumber

Picture will be about the same, but the rate/s scale will increase a factor of 40
With FRIB, other facilities and their additions we will have the experimental

capabilities over the next 50 years.



Nuclear Astrophysics

Proton capture process for stars and
X-ray bursters

For (p,y) rates sometimes need
excitation energies to a
precision of about 10 keV

Will nuclear theory ever
be that good?

Neutron capture
process for heavy
element formation
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Radioactive decay

M Mass spectroscopy
'Light particle reactions
Fission

M Spallation

M Fusion/Transfer

M Projectile fragmentation/
Deep inelastic reactions )



100 + 50 years

Over the past 100 years - experiment and theory have been intertwined

Designed and built facilities with for new ways of making nuclei.

Designed and built detectors for “seeing” what nuclei are like.

Found connections between nuclear properties and nuclear astrophysics.

Applied top-down implications of quantum mechanics for understanding what we see.
Understood the bottom-up connections with nucleons and particle physics.

Made use of the exponential increase in computation.

Over the next 50 years - experiment and theory will be intertwined

FRIB and other facilities will be used, and they will be upgraded and changed.
New experimental detectors will be designed and used.

Top-down and bottom-up theory understandings will be merged.

Computational and Al advances will be used in ways that we cannot imagine.

Thank you, Robert, for your immense contributions to bring us to this point.
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