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Redefining HIGH ? SPINS
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Redefining HIGH?SPINS
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Redefining HIGH?SPINS
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Unknowns Knowns

The Rumsfeld Matri

Known Knowns

Things we are aware
of and understand.

Known Unknowns

Things we are aware
of but don’t
understand.

Unknown Knowns

Things we
understand but are
not aware of.

Knowns

Unknown Unknowns

Things we are
neither aware of nor
understand.

Unknowns




Weakly bound systems

J. Dobaczewski et al. / Progress in Particle and Nuclear Physics 59 (2007) 432—445

Correlation
dominated:

yy

--------------

—_— — — —

Energy ——p

Protons Neutrons

S 1A ﬂ,/Azl

n Neutron number —»

S =A+A

% OAK RIDGE « Coupling to the Continuum

National Laboratory




Near the valley of stability, the quasi-particle binding is dominated by the mean field and S, = A. As we increase
the number of neutrons, approaching the drip line, A — 0 and S,, = A, ie. correlations dominated.

Thus, it is natural to expect that the transition between the two regimes will start to take place when S, = A.

The above can also be related to the asymptotic behavior of the Cooper pairs — e X,

For strongly bound nuclei, K = 2k, the tail of the particle density. K ~2x = 2. /zmsln /h

For weakly bound nuclei, K < 2k and the pair extends further outside the surface.

L I I. Tanihata et al. / Progress in Particle and Nuclear Physics 68 (2013) 215-313
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Motivation |

Rotational Motion

Islands of Inversion =
deformation

Weak binding

Neutron-rich nuclei = drip-line

%OAK RIDGE
National Laboratory

0.‘ :‘B



%

OAK RIDGE

National Laboratory

PHYSICAL REVIEW LETTERS 122, 052501 (2019)
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Weak binding effects on the structure of 4“Mg
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Results: Mg (670 keV transition)
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P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)

As discussed by Hansen and Jonson and subsequent works the extended matter radius exhibited by a two-neutron halo nucleus can be expressed in
terms of the separation energy of the weakly bound neutrons (S,,) through the tunneling parameter

c%‘ = rca/ ZMSZH/h
derived from the exponential nature of the asymptotic wavefunction. Following these authors, we consider a plot of
2 2 1/2
(<r2>/)<ri >y &

to capture the universal features of the 2n halo systems. Their root-mean-square (RMS) ratio represents the volume overlap between the valence
nucleons and the core.
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Weak coupling phenomenological model

4+

A
\ 9?& - H(A)

A "33 o P

»
\

|
2 H(A+2) = H(A) + Vnn + Vnn-core
V . | Y ) —
nn +
— Core & 2n basis Mixing

It 1s natural to expect that effects of weak binding on excited states will show when the energy
scales of the two degrees of freedom become comparable:

Ecore (2+) ~ E2n (2+)
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State energies and wavefunctions
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It is interesting to see that the unperturbed lines cross for
binding energies in the range expected for “*“Mg and even
a small mixing matrix element Vnn—core will give rise to
largely mixed states in the laboratory frame.

1000 — Neutrons (V,,) ------ —

800

A minimization procedure on the experimental energies of
the two potential states populated gives a solution with

600

E (keV)

400

Van—core = 69keV  §,, =877 keV

200 i .
- and wavefunctions:

0.0 0.5 1.0 15 2.0 25 3.0 27) = 0.45)2%,.,)+0.89]27 )
S 2n (MeV) 2F) = —0.8912 ) + 0.45[25 )

The fact that Van—core << E,,, (V,,) supports the weak coupling assumption.
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Reaction cross sections

The wavefunctions of the two 2* states can readily be used to determine their relative intensities populated in
a direct knockout reaction

To calculate the population of the final states in ““Mg produced 1.00 - . - . - .
from the 4! Al(-1p) reaction we assume that the ground state of . ETwo=level model ® Experiment

41Al is K = 5/2*, from the ©t[202]5/2 Nilsson level originating from _
the ds;, spherical level. 075

In the single-j approximation the collective spectroscopic factors
follow the values of the Clebsch-Gordan coefficients:

0.50

0.25 i } 1
In the minimization procedure we also include a single-particle
spectroscopic factor Sq(5/2+ — 2%,,) with a fitted value of 0.14.

0.00

Relative intensity

This gives a measure of the component of the [2*,,> state in the ' ot 2+ ' 2t
ground state of “1Al.
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Transition probabillities

It is of interest to consider E2 transition probabilities between the low-lying states, in particular the contribution of the
neutron halo to excite the 2*, and 27, states, for example in an intermediate energy Coulomb excitation experiment

In the weak coupling framework, we can calculate the transition
probabilities :
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PHYSICAL REVIEW LETTERS 129, 212502 (2022)
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Discovery of ¥Na 4 0
. Mg
D.S. Ahn,"" J. Amano,’ H. Baba,' N. Fukuda,! H. Geissel,” N. Inabe,' S. Ishikawa,” N. Iwasa,* T. Komatsubara,’' ,/
T. Kubo ,I’T K. Kusaka,1 D. I Morrissey,6 T. Na.kamura,2 M. Ohtak(i:,1 H. Otsu,l T. Saka.kibara,4 H. Sato,1 B.M. Sherrill,6 12| § 10
Y. Shirnizu,1 T. Sumikama,1 H. Suzuki,1 H. Takeda,1 O.B. Tarasov,6 H. Ueno,1 Y. Yanagisawa,1 and K. Yoshida' 35 37 39 :
'RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Na Na Na
2Departmem‘ of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan 2 " ¥
3Depan‘ment of Physics, Rikkyo University, 3-34-1 Nishi-lkebukuro, Toshima, Tokyo 171-8501, Japan
4Department of Physics, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan 1
SGSI, Helmholtzzentrum fiir Schwerionenforschung GmbH, Planckstrafie 1, 64291 Darmstadt, Germany 10 | " T
SNational Superconducting Cyclotron Laboratory, Michigan State University, Z14F (b)
640 South Shaw Lane, East Lansing, Michigan 48824, USA 40M g 10?
12 37Na§_
34
10
Ness  Ne™Ne
The new isotope 3%Na, the most neutron-rich sodium nucleus observed so far, was discovered at the 101 - N4 A
RIKEN Nishina Center Radioactive Isotope Beam Factory using the projectile fragmentation of an intense
48Ca beam at 345 MeV /nucleon on a beryllium target. Projectile fragments were separated and identified in g 1
flight with the large-acceptance two-stage separator BigRIPS. Nine **Na events have been unambiguousl e e
e A L Sl = ol _— 3 31323334 35363738
observed in this work and clearly establish the particle stability of 3°Na. Furthermore, the lack of A/Z
observation of 33-3Ne isotopes in this experiment significantly improves the overall confidence that 3*Ne is
the neutron dripline nucleus of neon. These results provide new key information to understand nuclear FIG. 1. Z versus A/Z particle identification plots for
binding and nuclear structure under extremely neutron-rich conditions. The newly established stability of projectile fragments produced in the “%Ca + Be reaction at
¥Na has a significant impact on nuclear models and theories predicting the neutron dripline and also 345 MeV /nucleon are shown for the (a) 3*Na and (b) *Ne
provides a key to understanding the nuclear shell property of *Na at the neutron number N = 28, which is settings. Nine events were observed for *Na in the *’Na setting.
normally a magic number. No events were observed for >>*Ne in the 3®Ne setting.
OAK RIDGE
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3Na low-lying structure

Consider for example the case of 3°Na with a single proton in tor
the [211]3/2 Nilsson orbit, a proton hole outside of “°Mg.

LI

=]
|||||

nj2n . jp Residual np inferaction

E,/d

s 5/2}
[ +
With an estimate of the residual np interaction of n = 34/A 2: 5/2
MeV, derived from the analysis of pairing gaps, we anticipate a [
value of [n| <~ 0.1 MeV for A = 40, depending on the volume °: i
overlap correction. 10 05
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Motivation lI: Superradiance

Superradiance was first studied by Dicke within the context of coherence effects in spontaneous radiation
processes. Since then, the phenomenon has been referenced in many areas of modern science, among them:
quantum optics, condensed matter, biophysics, and nuclear physics.

In atomic nuclei, seen as a complex open quantum many-body system, the effect arises from the coupling
to continuum states that can be treated in terms of a non-hermitian hamiltonian (non- hermitian super-
radiance). Increasing coupling to the continuum leads to the separation of long- lived and short-lived
(superradiant) resonance states.

R. J. Dicke, Phys. Rev. 93, 99 (1954)

P. von Brentano, Physics Report 264, 57 (1996) 57

A. Volya, V. Zelevinsky, AIP Conf.Proc. 777, 229 (2004)

N. Auerbach, V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011)
|. Rotter, J.P. Bird, Rep. Prog. Phys. 78, 114001 (2015)
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communications

physics

ARTICLE | Check o potes
OPEN

Superradiance in alpha clustered mirror nuclei

Alexander Volya® "2®, Marina Barbui® 2, Vladilen Z. Goldberg? & Grigory V. Rogachev?>4

includes other decay channels are necessar}r.*lt would also be
interesting to use different reactions, such as alpha-transfer, to
populate the cluster states and provide an independent measure
of the total width and branching ratios in mirror nuclei to verify
and benchmark current findings. Yet, our findings here may be
the clearest manifestation of the superradiance phenomenon in
nuclear physics to date.

BZa(lEN E}fﬂlq{lso]
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What is superradionce anywaye

Mixing of
e - unbound
levels
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Direct Reactions

<A+2laa | 4>

Constructive interference

\_'_I

Two particle transfer reactions like (t,p) or (p,t), where 2 nucleons are
deposited or picked up at the same point in space provide a specific tool to
probe the amplitude of this collective motion.

The transition operators <fla*a*|i>, <f|]aa|i> are the analogous to the
transition probabilities B(E2)’s on the quadrupole case.

R.A. Broglia, O. Hansen and C. Riedel, Adv. Nucl. Phys. Vol 6 (1973) 287

OAK RIDGE D. M. Brink and R.A. Broglia, Nuclear Superfluidity, Cambridge Monographs.
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Pairing vibrations and the (t,p) reaction

ococ<A +2|T|A >

= < | A +2>=

17>
Levels

1
27

G“(Z%“'T'”T

Closed shell nucleus, A,

o~Qo,,

Collective enhancement over sp cross-section due to

coherent contributions of correlated nn pairs
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Superradiance and two-neutron transfer reactions
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Superradiance and two-neutron transfer reactions
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Superradiance and two-neutron transfer reactions
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Superradiance and two-neutron transfer reactions
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Summaries

Observed spectrum of Mg does not fit with expectations and existing calculations. Breakdown of experimental
systematics and theory may suggest something is happening at the neutron dripline

Qualitative arguments indicate that weak binding effects could reproduce the spectrum seen in 4°Mg

v’ Beta-decay  Take 2 LBNL/ORNL Facility for
v Total Reaction Cross Section LBNL/MSU & m Rare. Isotope.Be.ams
‘/ Mass Measurement LBNL/MSU at Michigan State University

A 2x2 Toy-model calculation, was used to explore possible (general)

consequences on (t,p) reactions . Qualitative effects seem to appear when the
width becomes comparable to the intrinsic level separation energy

One would be tempted to speculate about cases

where these predictions could be tested:

 Studies of ''Li, 2*O(t,p) reactions with a TPC will be possible
Facility for

LS Rare Isotope Beams
m at Michigan State University
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Motivation lll ;. Kerman's Problem in the Continuum

Kerman's focus was on the mixing of the Nilsson orbits 1/2[510] and 3/2[512]
in 183W, ultimately achieving an excellent description of the perturbed
energies. In this case, the PRM Hamiltonian is simply given by a 2x2 matrix

E3/2
H, = ——(I+J +1_j+)

Coriolis coupling

E3jp = €39+ AI(I + 1)

8 =
- E1/2 :61/2 (I—|—1)—|—(_)I+1/_|_1/2))
Rotational constant \ \
A = 2 |
27 Decoupling parameter
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Motivation lll : Kerman's Problem in the Continuum

Kerman's focus was on the mixin~ ts 1/2[510] and 3/2[512]
in 183W, ultimately achie*~ f the perturbed
energies. In thi- Jiven by a 2x2 matrix
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Weakly Bound Systems
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I. Hamamoto, Phys. Rev. C 79, 014307 (2009)

OAK RIDGE K. Fossez, J. Rotureau, N. Michel, Quan Liu, and W. Nazarewicz, Phys. Rev. C 94, 054302 (2016)
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A Toy Model: Strong Coupling limit

AE,, >> 2Al]
CORIOLIS
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A Toy Model: decoupled limit
Degenerate Nilsson levels
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Summaries

Facility for

| Rare Isotope Beams
m at Michigan State University

A 2x2 Toy-model calculation, including Coriolis mixing with an unbound state, was used to explore possible (general)
rotational properties of an odd-A system. Qualitative effects seem to appear when the
width becomes comparable to the intrinsic level separation energy

One would be tempted to speculate about cases
where these predictions could be tested:

Facility for
& m Rare Isotope Beams * The case of Mg where the odd neutron is expected to occupy
= Michigan St i resonant Nilsson levels of f'and p parentage will be interesting to
study
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