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Some introductory remarks 
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The unknowns



Redefining HIGH ? SPINS 

To hyphen or not to hyphen?

w =
¶E

¶I
              rotational frequency

I(w)                  angular momentum

Á(1)(w) =
I

w
       kinematical moment of inertia

Á(2)(w) =
dI

dw
     dynamical moment of inertia

Nilsson ~  0
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Redefining HIGH?SPINS 
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Redefining HIGH?SPINS 

Really ?
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The Rumsfeld Matrix 
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Sn » l

Weakly bound systems

l /D »1

Protons Neutrons

• Coupling to the Continuum
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The above can also be related to the asymptotic behavior of the Cooper pairs → e−Kr. 

For strongly bound nuclei, K ≈ 2κ, the tail of the particle density. 

For weakly bound nuclei, K < 2κ and the pair  extends further outside the surface. 

Near the valley of stability, the quasi-particle binding is dominated by the mean field and Sn ≈ λ. As we increase

the number of neutrons, approaching the drip line, λ → 0 and Sn ≈ ∆, ie. correlations dominated. 

Thus, it is natural to expect that the transition between the two regimes will start to take place when Sn ≈ ∆.

S1n



A
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Rotational Motion

Weak binding

Islands of Inversion → 

deformation

Neutron-rich nuclei → drip-line

Motivation I
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2+→0+

4+→2+

• 670 keV transition ? 

22

+ ® 21

+ 02

+ ® 21

+
41

+ ® 21

+ + ...22

+ ® 01

+

• No scenario fits with existing expectations 

(systematics) nor predictions from calculation

• Breakdown of systematics and theory predictions 

may suggest something is happening at the dripline 
??

*

* preferred,  cf. Crawford et al., PRC 89, 041303(R) (2014).

Results: 40Mg (670 keV transition)
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As discussed by Hansen and Jonson and subsequent works the extended matter radius exhibited by a two-neutron halo nucleus can be expressed in 

terms of the separation energy of the weakly bound neutrons (S2n) through the tunneling parameter 

derived from the exponential nature of the asymptotic wavefunction. Following these authors, we consider a plot of

to capture the universal features of the 2n halo systems.  Their root-mean-square (RMS) ratio represents the volume overlap between the valence 

nucleons and the core.

P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987)
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It is natural to expect that effects of weak binding on excited states will show when the energy 

scales of the two degrees of freedom become comparable:

Weak coupling phenomenological model



1717

It is interesting to see that the unperturbed lines cross for 

binding energies in the range expected for 40Mg and even 

a small mixing matrix element Vnn−core will give rise to 

largely mixed states in the laboratory frame. 

A minimization procedure on the experimental energies of 

the two potential states populated gives a solution with 

Vnn−core = 69keV       S2n = 877 keV  

and wavefunctions:

The fact that Vnn−core  <<  Ecore (Vnn) supports the weak coupling assumption.

State energies and wavefunctions
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To calculate the population of the final states in 40Mg produced

from the 41Al(-1p) reaction we assume that the ground state of 
41Al is K = 5/2+, from the [202]5/2 Nilsson level originating from 

the d5/2 spherical level. 

In the single-j approximation the collective spectroscopic factors 

follow the values of the Clebsch-Gordan coefficients: 

In the minimization procedure we also include a single-particle

spectroscopic factor Ssp(5/2+ → 2+
2n) with a fitted value of 0.14. 

This gives a measure of the component of the |2+
2n> state in the 

ground state of 41Al. 

Reaction cross sections 

The wavefunctions of the two 2+ states can readily be used to determine their relative intensities populated in

a direct knockout reaction
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It is of interest to consider E2 transition probabilities between the low-lying states, in particular the contribution of the 

neutron halo to excite the 2+
1 and 2+

2 states, for example in an intermediate energy Coulomb excitation experiment 

Transition probabilities 

In the weak coupling framework, we can calculate the transition

probabilities :



2020
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Consider for example the case of 39Na with a single proton in 
the [211]3/2 Nilsson orbit, a proton hole outside of 40Mg. 

With an estimate of the residual np interaction of η ≈ 34/A 
MeV, derived from the analysis of pairing gaps , we anticipate a 
value of |η| <∼ 0.1 MeV for A = 40, depending on the volume 
overlap correction. 

Residual np interaction

39Na low-lying structure
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Motivation II:        Superradiance

Superradiance was first studied by Dicke within the context of coherence effects in spontaneous radiation 

processes. Since then, the phenomenon has been referenced in many areas of modern science, among them: 

quantum optics, condensed matter, biophysics, and nuclear physics. 

In atomic nuclei, seen as a complex open quantum many-body system, the effect arises from the coupling 

to continuum states that can be treated in terms of a non-hermitian hamiltonian (non- hermitian super-

radiance). Increasing coupling to the continuum leads to the separation of long- lived and short-lived 

(superradiant) resonance states. 

 

R. J. Dicke, Phys. Rev. 93, 99 (1954)

P. von Brentano, Physics Report 264, 57 (1996) 57
A. Volya, V. Zelevinsky, AIP Conf.Proc. 777, 229 (2004)
N. Auerbach, V. Zelevinsky, Rep. Prog. Phys. 74, 106301 (2011)
I. Rotter, J.P. Bird, Rep. Prog. Phys. 78, 114001 (2015)
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Mixing of 

unbound 

levels  

What is superradiance anyway?
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Simplest case   degenerate levels,   =0

Superradiant 

state 
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Spectroscopic ( u, v ) Factors

  

< A+1| a+ | A >

  

< A+ 2 | a+a+ | A >
Constructive interference

Two particle transfer reactions like (t,p) or (p,t), where 2 nucleons are 

deposited or picked up at the same point in space provide a specific tool to 

probe the amplitude of this collective motion. 

The transition operators <f|a+a+|i>, <f|aa|i> are the analogous to the 
transition probabilities B(E2)’s on the quadrupole case. 

R.A. Broglia, O. Hansen and C. Riedel, Adv. Nucl. Phys. Vol 6 (1973) 287

D. M. Brink and R.A. Broglia, Nuclear Superfluidity, Cambridge Monographs. 

Direct Reactions
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Pairing vibrations and the (t,p) reaction

Collective enhancement over  sp cross-section due to 

coherent contributions of correlated nn pairs 
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Superradiance and two-neutron transfer reactions 
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Superradiance and two-neutron transfer reactions 
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Superradiance and two-neutron transfer reactions 
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Superradiance and two-neutron transfer reactions 
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Observed spectrum of 40Mg does not fit with expectations and existing calculations.  Breakdown of experimental 

systematics and theory may suggest something is happening at the neutron dripline

Qualitative arguments indicate that weak binding effects could reproduce the spectrum seen in 40Mg  

Summaries

✓ Beta-decay       Take 2                     LBNL/ORNL

✓ Total Reaction Cross Section          LBNL/MSU    

✓ Mass Measurement               LBNL/MSU

A 2x2 Toy-model calculation, including Coriolis mixing with an unbound state, was used to explore possible (general) 

consequences on (t,p) reactions and rotational properties of an odd-A system. Qualitative effects seem to appear when the 

width becomes comparable to the intrinsic level separation energy

One would be tempted to speculate about cases 

where these predictions could be tested:

• Studies of 11Li,  24O(t,p) reactions with a TPC will be possible

• The case of 39Mg  where the odd neutron is expected to occupy 

resonant Nilsson levels of f and p parentage will be interesting to 

study
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Motivation III :     Kerman’s Problem in the Continuum

Rotational constant 

Decoupling parameter

Coriolis coupling



Kerman's focus was on the mixing of the Nilsson orbits 1/2[510] and 3/2[512] 

in 183W, ultimately achieving an excellent description of the perturbed 

energies. In this case, the PRM Hamiltonian is simply given by a 2x2 matrix
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Motivation III :     Kerman’s Problem in the Continuum

Rotational constant 

Decoupling parameter

Coriolis coupling



Kerman's focus was on the mixing of the Nilsson orbits 1/2[510] and 3/2[512] 

in 183W, ultimately achieving an excellent description of the perturbed 

energies. In this case, the PRM Hamiltonian is simply given by a 2x2 matrix
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I. Hamamoto, Phys. Rev. C 79, 014307 (2009)

Weakly Bound Systems

39Mg

K. Fossez, J. Rotureau, N. Michel, Quan Liu, and W. Nazarewicz, Phys. Rev. C 94, 054302 (2016)
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A Toy Model:  Strong Coupling limit

 >> 2AIj

ROTATIONAL 

BAND

CORIOLIS

WIDTH
NILSSON

Energies

RENORMALIZED
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A Toy Model:  decoupled limit

Degenerate  Nilsson levels

ROTATIONAL 

BAND

CORIOLIS

WIDTH

In units of A
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Observed spectrum of 40Mg does not fit with expectations and existing calculations.  Breakdown of experimental 

systematics and theory may suggest something is happening at the neutron dripline

Qualitative arguments indicate that weak binding effects could reproduce the spectrum seen in 40Mg  

Summaries

✓ Beta-decay       Take 2                     LBNL/ORNL

✓ Total Reaction Cross Section          LBNL/MSU    

✓ Mass Measurement               LBNL/MSU

A 2x2 Toy-model calculation, including Coriolis mixing with an unbound state, was used to explore possible (general) 

consequences on (t,p) reactions and rotational properties of an odd-A system. Qualitative effects seem to appear when the 

width becomes comparable to the intrinsic level separation energy

One would be tempted to speculate about cases 

where these predictions could be tested:

• Studies of 11Li,  24O(t,p) reactions with a TPC will be possible

• The case of 39Mg  where the odd neutron is expected to occupy 

resonant Nilsson levels of f and p parentage will be interesting to 

study
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Thank you Robert,  for everything !
And Congratulations on your remarkable career and your 

outstanding accomplishments !

COMPADRE 
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Thank You !   
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