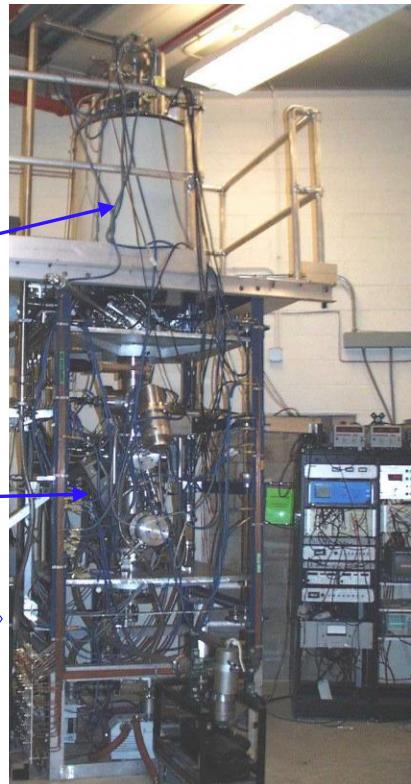
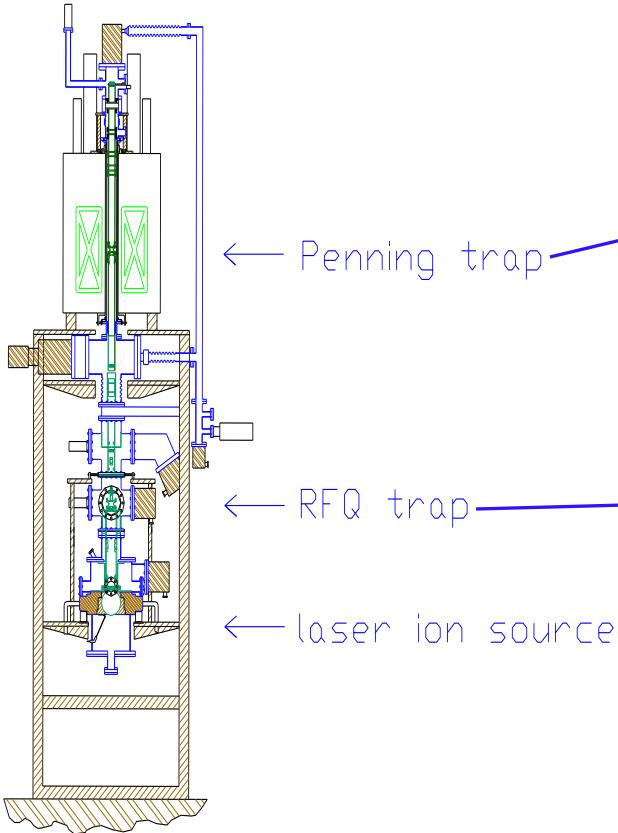


NUCLEAR PHYSICS OVER THE YEARS: FROM THE HIGH SPIN ERA TO RARE ISOTOPES

SEPTEMBER 19-20, 2025

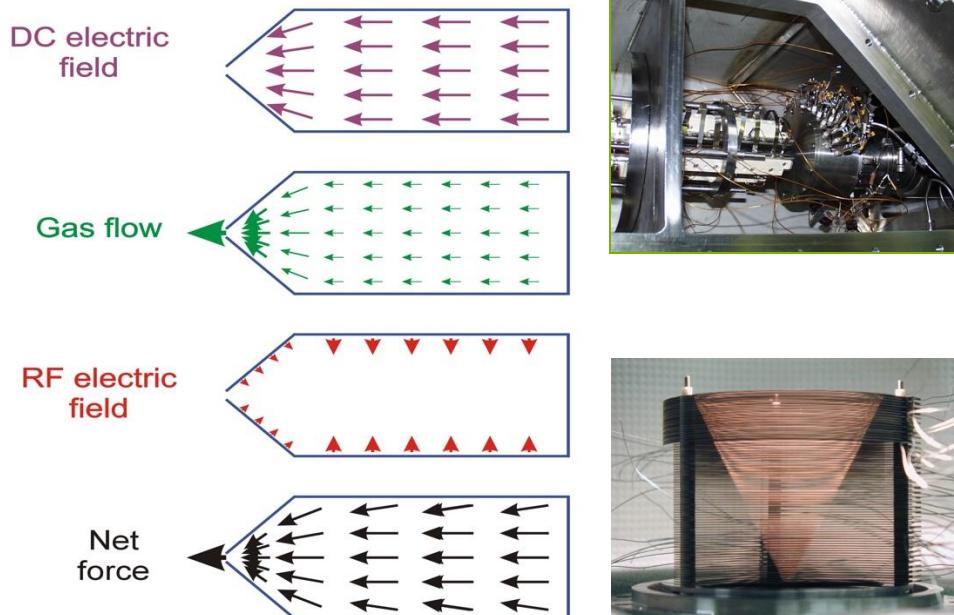
TRAPPED AT ARGONNE

JASON CLARK
PHYSICS DIVISION

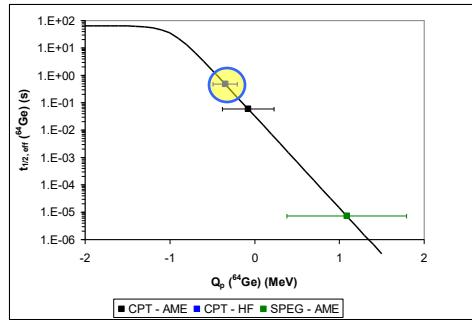
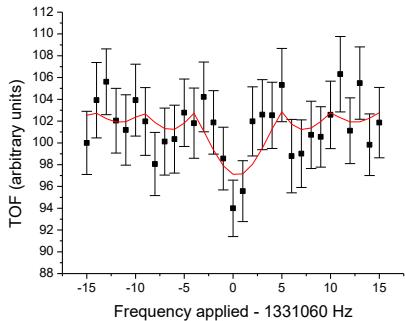



Argonne National Laboratory is a
U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

Argonne
NATIONAL LABORATORY


EARLY DAYS: MOVE OF CPT TO ANL

- Following shutdown of TASCC (Chalk River), a budding scientist (Guy Savard) was searching for a new home that could accommodate the Canadian Penning Trap (CPT)
- I worked on the CPT in 1996 at Chalk River, and came to Argonne in summer of 1997 (undergraduate research assistant) to help rebuild the CPT
- Collaboration between McGill U., U. Manitoba, and ANL began



EARLY DAYS: GAS CATCHER DEVELOPMENT

- Guy had proposed new way to collect rare, short-lived isotopes and deliver them to the CPT: gas catcher
- Gas catcher uses gas, DC, and RF fields to thermalize and transport isotopes that enter it
- Years of development of gas catchers from handheld ones to the large ones of today
- Meanwhile, studies of systematic uncertainties with CPT underway (I joined as a Ph.D student)

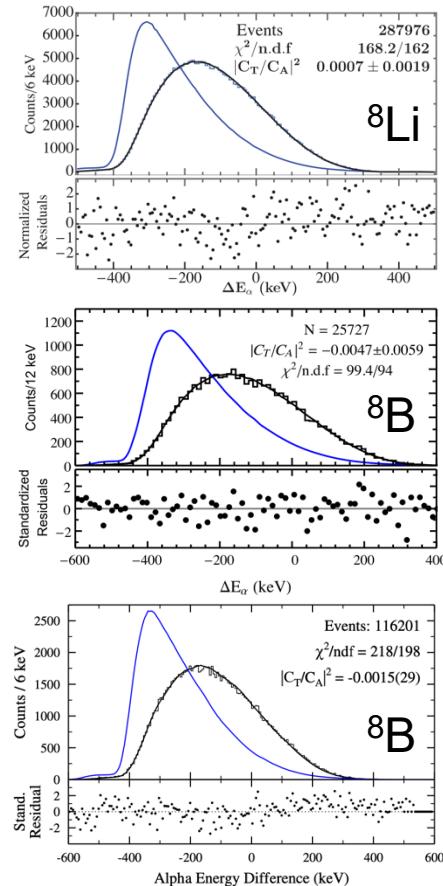
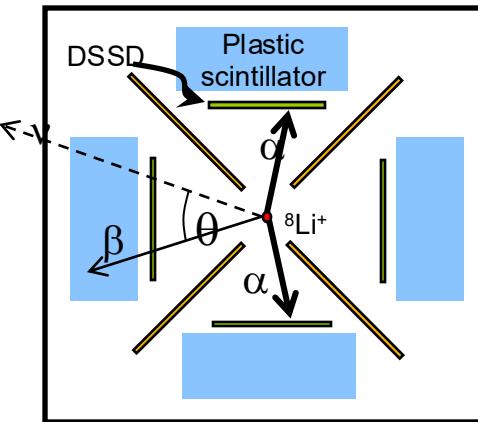
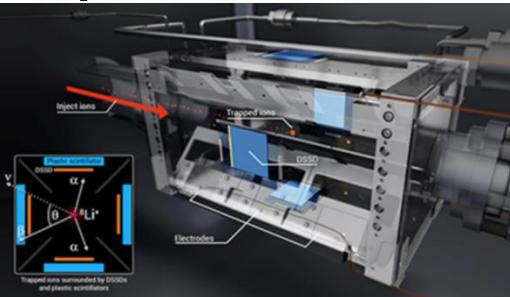
EARLY DAYS: FIRST MEASUREMENTS

- Originally planned to measure ^{38m}K (superallowed 0^+ to 0^+ beta decay), but later learned of importance of mass measurement of rp-process waiting point ^{68}Se which promised to be easier
- My thesis experiments of waiting-point nuclides ^{68}Se and ^{64}Ge were the kick-start to the CPT measurement program of short-lived rare isotopes collected by a gas catcher

J.A. Clark *et al.*, Phys. Rev. Lett **92**, 192501 (2004).

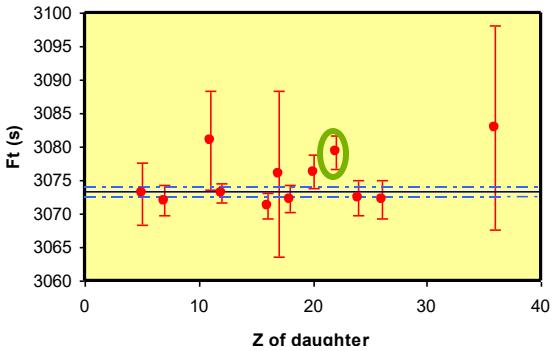
J.A. Clark *et al.*, Phys. Rev. C **75**, 032801® (2007).

AME: G. Audi *et al.*, Nucl. Phys. **A729**, 337 (2003).




HF: B. A. Brown *et al.*, Phys. Rev. C **65**, 045802 (2002).

SPEG: G.F. Lima *et al.*, Phys. Rev. C **65**, 044618 (2002).

MEANWHILE ... DEVELOPMENT OF THE BETA-DECAY PAUL TRAP (BPT)


- Paul trap was developed to study weak interaction (beta-neutrino correlation)
- Open volume Paul trap, surrounded by DSSDs, permitted study of ${}^8\text{B}$, ${}^8\text{Li}$ decay
- Much improved limits on the contribution of the tensor component to the weak interaction
- Improved limits continue to show agreement with Standard Model predictions
- ${}^8\text{B}$: $a_{\beta\nu} = -0.3345 \pm 0.0019 \text{ (stat)} \pm 0.0021 \text{ (syst)}$, consistent with the SM prediction of $-1/3$.

Burkey [ANL] PRL 128 (2022), Gallant [LLNL] PRL 130 (2023), Longfellow [LLNL] PRL 132 (2024)

EARLY DAYS: FIRST MEASUREMENTS

- Measurements of interest for rp-process nucleosynthesis continued, along with measurements of interest for CKM matrix unitarity
- More advanced gas catchers developed to optimize collection and transfer of more exotic and low mass ions
- Started program of measurements with ^{252}Cf fission fragments

PRL 95, 102501 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 SEPTEMBER 2005

Q Value of the Superallowed Decay of ^{40}V and Its Influence on V_{ud} and the Unitarity of the Cabibbo-Kobayashi-Maskawa Matrix

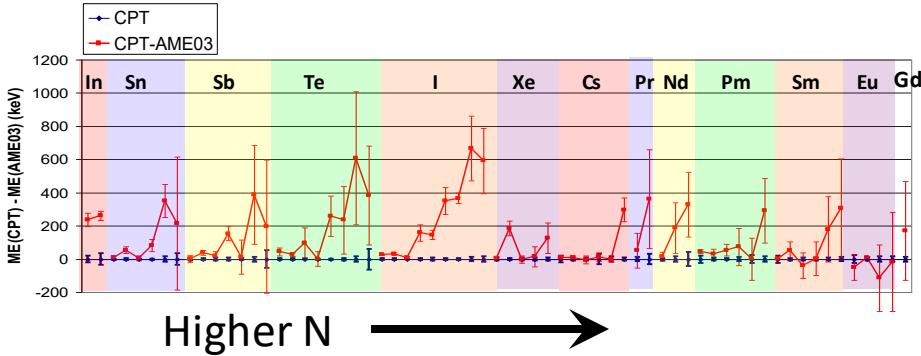
G. Savard,^{1,2} F. Buchinger,³ J. A. Clark,^{4,1} J. E. Crawford,⁵ S. Gulick,³ J. C. Hardy,⁵ A. A. Hecht,^{1,6} J. K. P. Lee,³ A. F. Levand,¹ N. D. Scielzo,¹ H. Sharma,^{4,1} K. S. Sharma,^{4,1} I. Tanabata,¹ A. C. C. Villari,^{1,7} and Y. Wang⁸

¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

²Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

³Department of Physics and Gill University, Moncton, Quebec, E1A 2T8, Canada

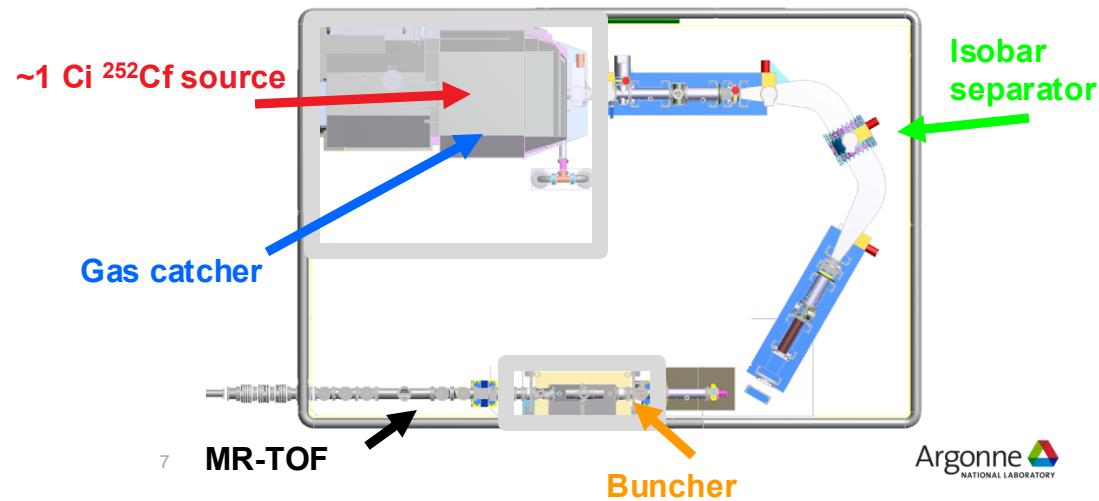
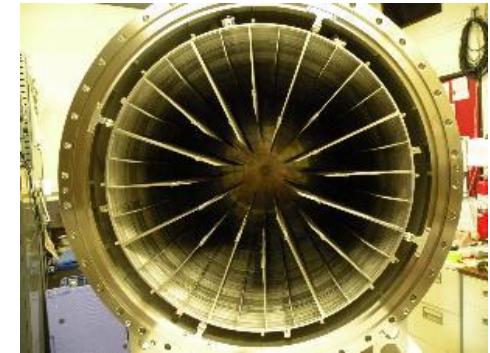
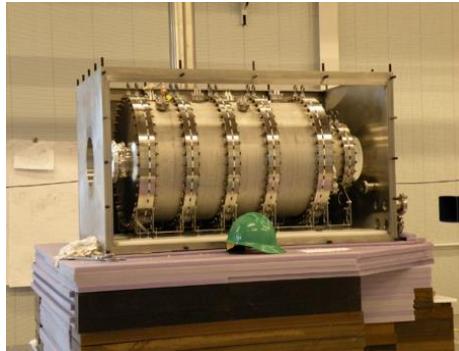
⁴Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada


⁵Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

⁶Department of Chemistry, University of Maryland, College Park, Maryland 20742, USA

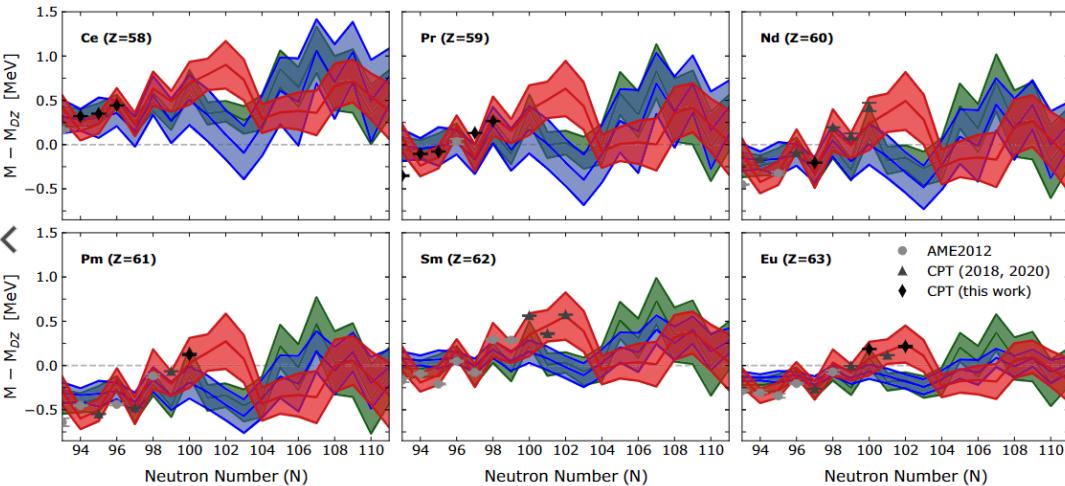
⁷GANIL, BP 55027, 14076 Caen Cedex 5, France

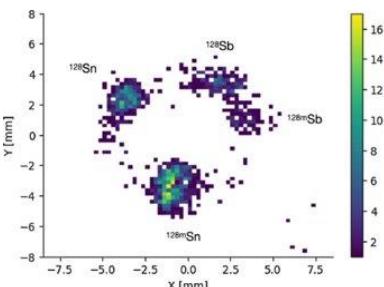
(Received 15 April 2005; published 29 August 2005)




The masses of the rare earth nuclei ^{40}V and its daughter ^{40}Cr have been measured with the Canadian Penning Trap on-line Penning trap to an accuracy of $\pm 10^{-3}$. A Q -value of $7052.0(40)$ keV for the superallowed beta decay of ^{40}V is obtained from the difference of these two masses. With this precise Q value, the $T\bar{V}$ value for this decay is determined with improved precision. An investigation of an earlier Q -value measurement for ^{40}V uncovers a set of 7 measurements that cannot be reconciled with modern data and affects previous evaluations of V_{ud} from superallowed Fermi decays. A new evaluation, adding our new data and removing the discredited subset, yields new values for G_V and V_{ud} . When combined with recent results for V_{us} , this yields modified constraints for the unitarity of the Cabibbo-Kobayashi-Maskawa matrix and other extensions of the standard model.

J. Van Schelt *et al.*, Phys. Rev. C **85**, 045805 (2012)

THE RIA YEARS: NEW FACILITIES


- Competition for the next generation facility included Argonne's proposal utilizing gas catcher technology
- While waiting for a decision to go ahead with a new facility and the site for the new facility, CARIBU was proposed, and started delivering beams in 2010
- CPT moved to CARIBU and started taking beams

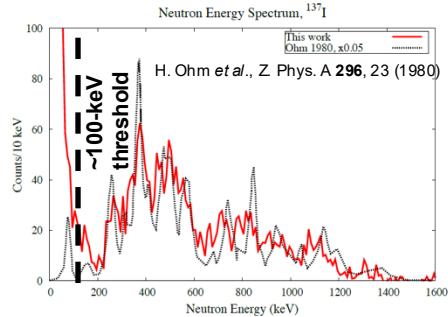
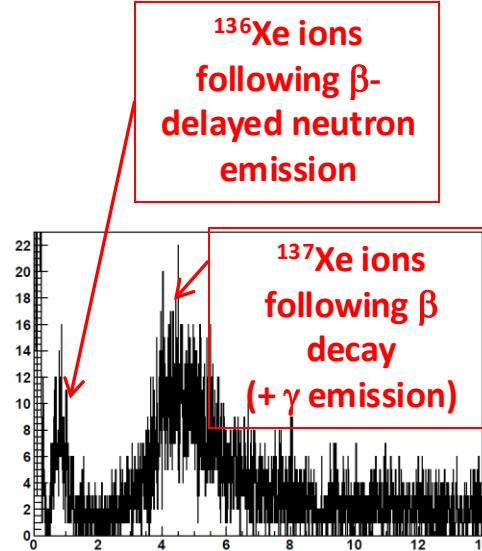
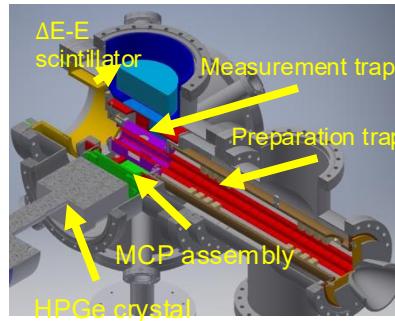
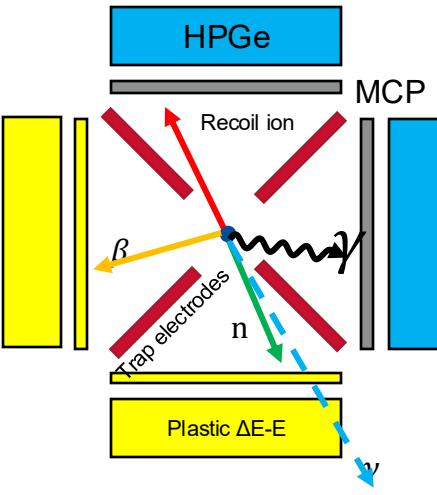

THE CARIBU YEARS

hot
cold
hot/cold

- Large number of ^{252}Cf fission fragments measured with the CPT
- Measurements helped to determine possible sites of the astrophysical r process
- Converted mass measurement technique from TOF-ICR to PI-ICR
- Measurements also used to examine nuclear structure, improve mass models, and determine relevance of “astromers”

R. Orford, N. Vassh *et al.*, Phys. Rev. C, **105**, L052802 (2022).

D. Hoff *et al.*, Phys. Rev. Lett. **131** (2023) 262701





THE CARIBU YEARS

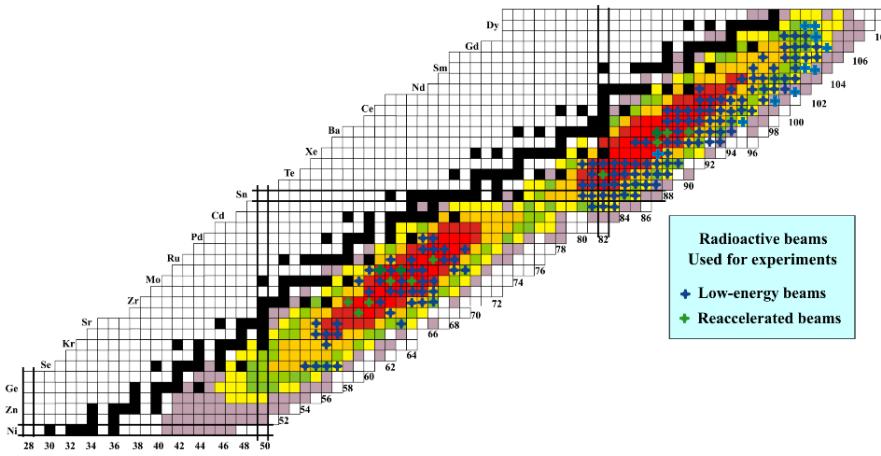
- Beta-decay Paul Trap (BPT) moved to CARIBU in 2013 for series of measurements of beta-delayed neutron (BDN) emission
- BDN program had started in 2010 by outfitting BPT with MCPs, plastic scintillators, and Ge detectors to look at ^{137}I decay
- Success of program in 2013 led to development of trap dedicated to studying BDN in new CARIBU hall (ex Tandem hall) with BEARtrap

N.D. Scielzo *et al.*, NIM A **681**, 94 (2012).



Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

THE CARIBU YEARS


- Tandem removed and space became the new experimental hall for CARIBU low-energy (stopped) beams
- X-array, SATURN, MTAS, SuN, implantation station, ATLANTIS, BEARtrap, ...

X-array and SATURN

MTAS

SuN

THE CARIBU YEARS

- Papers with R.V.F. Janssens and J.A. Clark as co-authors primarily with CARIBU beams (low energy ...)

PHYSICAL REVIEW C 93, 014306 (2016)

γ -soft ^{146}Ba and the role of nonaxial shapes at $N \approx 90$

A. J. Mitchell,^{1,*} C. J. Lister,¹ E. A. McCutchan,² M. Albers,^{3,†} A. D. Ayangeakaa,³ P. F. Bertone,^{3,‡} M. P. Carpenter,³ C. J. Chiara,^{3,§,¶} P. Chowdhury,³ J. A. Clark,³ P. Copp,³ H. M. David,^{3,||} A. Y. Deo,^{3,¶} B. DiGiovine,³ N. D'Olympia,^{1,¶} R. Dungan,³ R. D. Harding,^{1,6,*} J. Harker,^{3,¶} S. S. Hota,^{1,¶} R. V. F. Janssens,³ F. G. Kondev,⁷ S. H. Liu,^{8,9,¶} A. V. Ramayya,¹⁰ J. Rissanen,^{11,¶} G. Savard,^{3,12} D. Seweryniak,³ R. Shearman,^{1,6,¶} A. A. Sonzogni,² S. L. Tabor,⁵ W. B. Walters,⁴ E. Wang,¹⁰ and S. Zhu,³

PHYSICAL REVIEW LETTERS 120, 182502 (2018)

Masses and β -Decay Spectroscopy of Neutron-Rich Odd-Odd $^{160,162}\text{Eu}$ Nuclei: Evidence for a Subshell Gap with Large Deformation at $N = 98$

D. J. Hartley,¹ F. G. Kondev,² R. Orford,^{2,3} J. A. Clark,^{2,4} G. Savard,^{2,5} A. D. Ayangeakaa,^{2,¶} S. Bottoni,^{2,†} F. Buchinger,³ M. T. Burkay,^{2,5} M. P. Carpenter,² P. Copp,^{2,6} D. A. Gorelov,^{2,4} K. Hicks,¹ C. R. Hoffman,² C. Hu,⁷ R. V. F. Janssens,^{2,¶} J. W. Klimes,² T. Lauritsen,² J. Sethi,^{2,8} D. Seweryniak,² K. S. Sharma,⁹ H. Zhang,⁷ S. Zhu,² and Y. Zhu,⁷

PHYSICAL REVIEW C 101, 044301 (2020)

High- K , two-quasiparticle states in ^{160}Gd

D. J. Hartley,^{1,*} F. G. Kondev,^{2,¶} G. Savard,² J. A. Clark,² A. D. Ayangeakaa,^{2,¶} S. Bottoni,^{2,†} M. P. Carpenter,² P. Copp,^{2,3} K. Hicks,¹ C. R. Hoffman,² R. V. F. Janssens,^{2,¶} T. Lauritsen,² R. Orford,^{2,¶} J. Sethi,^{2,7} and S. Zhu,^{2,8}

PHYSICAL REVIEW C 103, 024323 (2021)

Ground-state and decay properties of neutron-rich ^{106}Nb

A. J. Mitchell,^{1,*} R. Orford,^{2,3,†} G. J. Lane,¹ C. J. Lister,⁴ P. Copp,^{4,‡} J. A. Clark,³ G. Savard,^{3,§} J. M. Allmond,⁶ A. D. Ayangeakaa,^{7,8} S. Bottoni,^{3,§} M. P. Carpenter,³ P. Chowdhury,³ D. A. Gorelov,^{3,¶} R. V. F. Janssens,^{3,¶} F. G. Kondev,³ U. Patel,^{1,¶} D. Seweryniak,³ M. L. Smith,^{3,¶} Y. Y. Zhong,¹ and S. Zhu,^{3,¶}

THE CARIBU YEARS

- Papers with R.V.F. Janssens and J.A. Clark as co-authors primarily with CARIBU beams (... and reaccelerated)

PRL 116, 112503 (2016) PHYSICAL REVIEW LETTERS week ending 18 MARCH 2016

Direct Evidence of Octupole Deformation in Neutron-Rich ^{144}Ba

B. Bucher,^{1,*} S. Zhu,² C. Y. Wu,¹ R. V. F. Janssens,² D. Cline,³ A. B. Hayes,³ M. Albers,² A. D. Ayangeakaa,² P. A. Butler,⁴ C. M. Campbell,⁵ M. P. Carpenter,² C. J. Chiara,^{2,6,†} J. A. Clark,² H. L. Crawford,^{7,§} M. Cromaz,⁵ H. M. David,^{2,§} C. Dickerson,² E. T. Gregor,^{8,§} J. Harker,^{2,6} C. R. Hoffman,² B. P. Kay,² F. G. Kondev,² A. Korichi,^{2,10} T. Lauritsen,² A. O. Macchiavelli,⁵ R. C. Pardo,² A. Richard,⁷ M. A. Riley,¹¹ G. Savard,² M. Scheck,^{8,9} D. Seweryniak,² M. K. Smith,¹² R. Vondrasek,² and A. Wiens⁵

PRL 118, 152504 (2017) PHYSICAL REVIEW LETTERS week ending 14 APRIL 2017

Direct Evidence for Octupole Deformation in ^{146}Ba and the Origin of Large $E1$ Moment Variations in Reflection-Asymmetric Nuclei

B. Bucher,^{1,2,*} S. Zhu,^{3,†} C. Y. Wu,¹ R. V. F. Janssens,³ R. N. Bernard,⁴ L. M. Robledo,⁴ T. R. Rodriguez,⁴ D. Cline,⁵ A. B. Hayes,⁵ A. D. Ayangeakaa,³ M. Q. Buckner,¹ C. M. Campbell,⁶ M. P. Carpenter,² J. A. Clark,³ H. L. Crawford,⁶ H. M. David,^{4,§} C. Dickerson,² J. Harker,^{3,7} C. R. Hoffman,³ B. P. Kay,² F. G. Kondev,² T. Lauritsen,³ A. O. Macchiavelli,⁵ R. C. Pardo,³ G. Savard,³ D. Seweryniak,³ and R. Vondrasek³

PHYSICAL REVIEW C 103, 034322 (2021)

Possible quenching of static neutron pairing near the $N = 98$ deformed shell gap: Rotational structures in $^{160,161}\text{Gd}$

D. J. Hartley,¹ K. Villafana,^{2,*} F. G. Kondev,³ M. A. Riley,² R. V. F. Janssens,^{4,5} K. Auranen,³ A. D. Ayangeakaa,^{1,†} J. S. Baron,² A. J. Boston,⁶ M. P. Carpenter,² J. A. Clark,³ J. P. Greene,³ J. Heery,⁶ C. R. Hoffman,³ P. Jackson,¹ T. Lauritsen,³ J. Li,^{3,‡} D. Little,⁴ E. S. Paul,⁶ G. Savard,³ D. Seweryniak,³ J. Simpson,⁷ S. Stolze,³ G. L. Wilson,⁸ J. Wu,³ S. Zhu,^{3,§} and S. Frauendorf⁹

PHYSICAL REVIEW C 105, 014301 (2022)

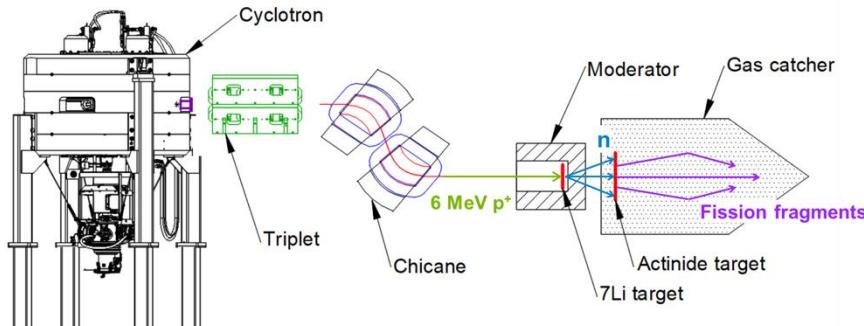
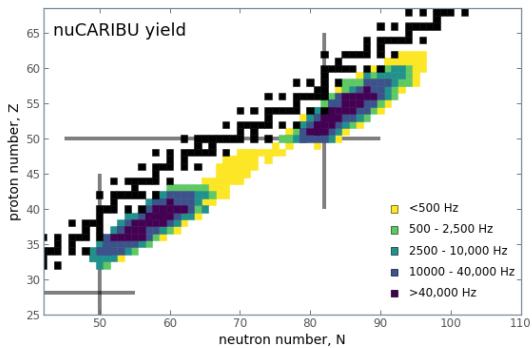
$\nu i_{13/2}$ structures in ^{155}Sm and ^{159}Gd : Supporting evidence of a $Z = 60$ deformed subshell gap

D. J. Hartley,¹ F. G. Kondev,² M. P. Carpenter,² R. V. F. Janssens,^{3,4} M. A. Riley,⁵ K. Villafana,^{5,‡} K. Auranen,² A. D. Ayangeakaa,^{3,4} J. S. Baron,⁵ A. J. Boston,⁶ J. A. Clark,² J. P. Greene,² J. Heery,⁶ C. R. Hoffman,² T. Lauritsen,² J. Li,^{2,†} D. Little,³ E. S. Paul,⁶ G. Savard,² D. Seweryniak,² J. Simpson,⁷ S. Stolze,² G. L. Wilson,⁸ J. Wu,² and S. Zhu,^{2,‡}

PHYSICAL REVIEW C 106, 034318 (2022)

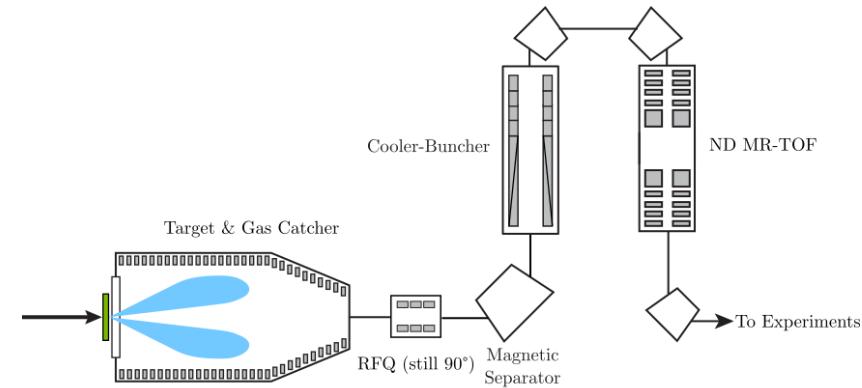
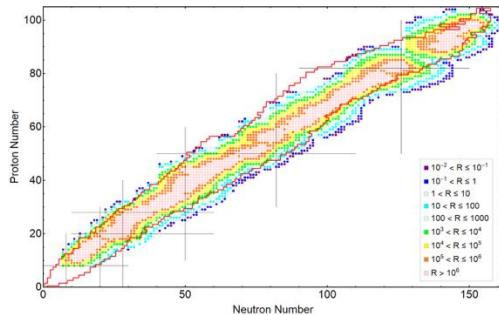
β decay of ^{141}Ba

Javier Rufino, Jr.,^{1,2} E. A. McCutchan,² S. Zhu,^{2,3} A. A. Sonzogni,² M. Alcorta,³ P. F. Bertone,³ M. P. Carpenter,³ J. Clark,³ C. R. Hoffman,³ R. V. F. Janssens,^{3,4,5} F. G. Kondev,³ T. Lauritsen,³ C. J. Lister,³ R. Pardo,³ A. Rogers,³ G. Savard,³ D. Seweryniak,³ and R. Vondrasek³

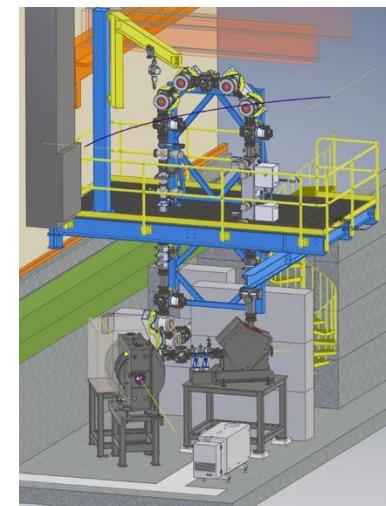


PHYSICAL REVIEW C 109, 024314 (2024)

Determination of the spins and parities for the 0_4^+ and 0_5^+ states in ^{100}Zr

J. Wu,^{1,2,*} M. P. Carpenter,² F. G. Kondev,² R. V. F. Janssens,^{3,4} S. Zhu,^{2,†} E. A. McCutchan,¹ A. D. Ayangeakaa,^{3,4} J. Chen,^{2,‡} J. Clark,² D. J. Hartley,⁵ T. Lauritsen,² N. Pietralla,⁶ G. Savard,² D. Seweryniak,² and V. Werner⁶



FROM CARIBU TO nuCARIBU

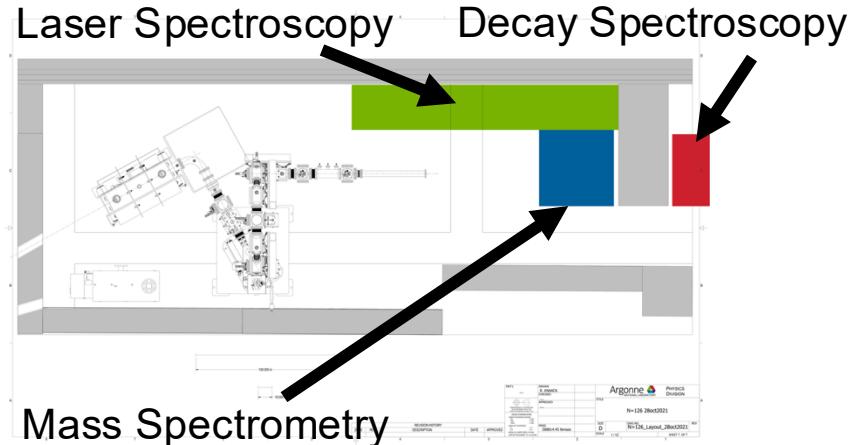
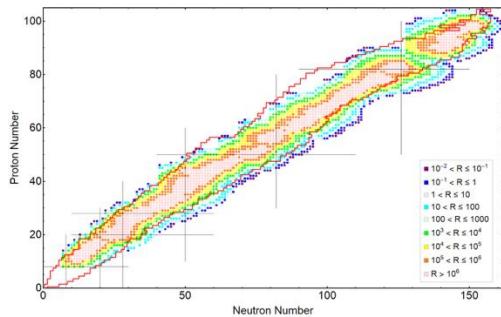
- Source of neutron-rich nuclides from ^{252}Cf replaced with n-induced fission of ^{235}U
- Beams first extracted in June of 2025
- In coming months, beams to be delivered to low-energy area, and reaccelerated through ATLAS
- First at 10% power; full power expected sometime in 2026



N=126 FACTORY

- Building upon the developed gas catcher technology, short, fat gas catcher optimal to capture products from multi-nucleon transfer (MNT) reactions
- CPT, laser spectroscopy station, and decay station to take first beams at N=126 Factory

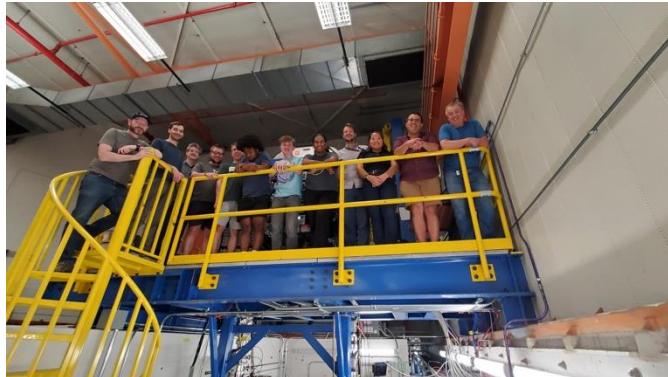
Schematic of N=126 Factory

Picture taken June, 2024

N=126 FACTORY

- Building upon the developed gas catcher technology, short, fat gas catcher optimal to capture products from multi-nucleon transfer (MNT) reactions
- CPT, laser spectroscopy station, and decay station to take first beams at N=126 Factory


Laser spectroscopy beamline design

CPT tower

SUMMARY, ACKNOWLEDGEMENTS, AND THANKS

- Ion trapping program at ANL started in 1997 with the CPT, and has since led to the development of the BPT, BEARtrap, CARIBU (nuCARIBU), and the N=126 Factory, providing new insight into nuclear structure, nucleosynthesis, and the weak interaction
- So, so, so many people to thank and it's impossible to list them all here

- Special thanks to Robert for all the discussions, advice, counseling, leadership, mentoring, and friendship over the years.

An aerial photograph of the Argonne National Laboratory complex. The image shows a large, modern research facility with numerous buildings, roads, and parking lots. A prominent circular structure, likely a particle accelerator, is visible in the center-right. The surrounding area is a mix of green fields and forested areas. The overall image has a blue-tinted overlay.

Argonne

NATIONAL LABORATORY

