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Early Days at TUNL

I first met Robert as an REU student at TUNL in the summer of 2018

2018 TUNL REU CohortRobert and Samantha
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• Robert was settling in as the 

Bilpuch Professor at UNC

• Becoming acquainted with the 

nuclear structure and 

astrophysics work being done at 

TUNL

• Already plotting to improve the 

gamma-ray detection system at 

HIγS

Early Days at TUNL

γ3 Array
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High Intensity Gamma-Ray Source (HIγS)

H. R. Weller et al., Prog. Part. Nucl. Phys. 62, 257 (2009).

Laser Compton backscattering used to produce 

quasimonochromatic gamma-ray beams 

• Energy ranging from 2 to 120 MeV

• Linear or circular polarization option

• Uniquely high-intensity facility for gamma production
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Nuclear Resonance Fluorescence (NRF)

• Absorption of a resonance-energy photon by the 

nucleus, populating an excited state which then 

decays via gamma emission

• Mainly low-spin states are excited (E1/M1)

• Linear polarization of HIγS lets us make the E1/M1 

distinction! 

C. R. Howell et al., J. Phys. G: Nucl. 

Part. Phys. 49 010502 (2022)
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Maximizing the potential of NRF: What if we could measure lifetimes?

• My REU project was to test CeBr3 scintillators 

(no intrinsic radioactivity)

• Linearity, energy/timing resolution

• Robert ordered 12 to use in a new array!
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REU to PhD

There are no stupid 

questions!

…even at 3am!

Thanks to Robert, I felt very 

welcome in this field.
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Assembly of the Clover Array (2020, post-lockdown)
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First Measurements (2021): Shape Coexistence in/near the Ni isotopes
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N. Marginean, Bormio 2025

• First Clover Array 

measurements were

motivated by shape 

coexistence in the Ni 

isotopes

• Ben Crider described 

already why the Ni 

isotopes are 

interesting!

• In stable 64Ni, all 

excited 0+ states 

have been seen 

using NRF at HIGS stable
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Full Characterization of 68Zn up to 10 MeV

Part 1. NRF Scan

• 30 beam energies: 2.90-9.79 MeV    

(𝑆𝑝 = 9.98 MeV)

• 3 hr measurements 

• Linear polarization

Part 2. Dedicated Coincidences

• 30 hr measurements at 9.46 and 9.79 MeV

• High level density 

• Hope to see extended level structure

A. Zilges et al., Prog. Part. Nucl. Phys. 122, 103903 (2022).
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First Measurements (2021): Shape Coexistence in/near the Ni isotopes

Z=28 70Ni 72Ni 74Ni68Ni 76Ni 78Ni66Ni64Ni62Ni

68Zn

• How do the shapes change with Z?

• Do the same excitations persist in a stable system 

with two additional protons?



12

Results for 68Zn

E1

M1

Some uncertain 

parities!

158 excited states 

were found below the 

particle threshold!
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Shell-model predictions (56Ni core) don’t capture total M1 strength

Calculations by B. A. Brown
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Full fp model space (40Ca core) predicts additional high-energy strength

These results demonstrate core breaking in 68Zn

Calculations by B. A. Brown
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Experimental Level Scheme

23 excited states up to ~4.2 MeV were identified
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Experimental Level Scheme: High Spin for NRF!

Higher angular momentum 

than expected coming from 

multi-step decays
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Experimental Level Scheme: 0+ States

Reached several of the 0+

states relevant for shape 

coexistence
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Lifetime measurements using NRF?
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• CeBr3 resolution of 250 ps demonstrated with real NRF data – a huge step forward

• Lifetime measurements may be possible after careful calibration

o Project of Daniel Melayes, UNC
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Outlook for the Clover Array

• The 68Zn data allowed an extensive test of shell-model calculations at low spin, revealing which shells 

become active in different energy regimes 

• Coincidence measurements have expanded the reach of NRF up to J=4

• In the meantime, dozens of other fascinating experiments have been performed

• Still more potential for physics discovery with this array that Robert and the team at TUNL have worked so

hard to bring to life!
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A year full of celebrations

Robert’s Retirement, February 2025

Samantha’s PhD Defense, June 2025 
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Thank you! Questions?

Robert V. F. Janssens, B. Alex Brown, Akaa D. Ayangeakaa, 

Soumendu Bhattacharjee, Emily Churchman, Sean Finch, Udo 

Friman-Gayer, S. Gaither Frye, Matteo Fulghieri, David Gribble,

Xavier H.-K. James, Richard Longland, Daniel Melayes, Clay Wegner

This work is supported by the DOE, Office of Science, Office of Nuclear Physics, 

under Grants DE-FG02-97ER41041 (UNC) and DE-FG02-97ER41033 (TUNL).
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Extra Slides
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Gamma-Gamma Coincidence Measurements

• Level scheme analysis

• Gating on the 2+
1 → 0+

1 transition 0+
3

1
0
7
7

8
0
6

1
2
1
9

1
2
6
1

1
3
4
0

1
6
7
41
7
4
5

2+
1

0+
1

2+
2

2+
4

3-
1

2+
3

4+
1



24

Coincidence Matrix Analysis

• Gate on one gamma and background-subtract to see what others are associated

• Example: Gating on the 2+
1 → 0+

1 transition
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Shell-Model Predictions for M1 States

Strength comes from transitions within 

the p1/2, p3/2, f5/2, and g9/2 orbitals, and 

between the p3/2 and p1/2 shells
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Shell-Model Predictions for M1 States

0f5/2

0f7/2

M1 Spin-Flip Giant Resonance

L-½

L+½

An expanded model space 

is needed to account for the 

experimental M1 strength
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Shell Model Predictions for M1 States

These results demonstrate core breaking in 68Zn

• High-energy strength is described well by including the f7/2 shell

• Low-energy p3/2 -> p1/2 strength is overestimated when nucleons 

are not allowed to occupy the g9/2 shell

• The fp model space does not allow for 1- states
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Shell-model level scheme

experiment   jj44b      JUN45        fp

• Experimental level scheme best described by the jj44 model 

space

o Energy deviation ~200 keV for jj44b and JUN45 and 

~300 keV for fp

• Branching ratios are best described in this model space as 

well using the JUN45 effective interaction

• Another indication of the importance of the g9/2 shell at low 

energy
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Coincidences: Fast-timing techniques for measuring lifetimes

Interested in exploring the lifetimes of states 

populated during coincidence measurements

68Zn states of interest: 

• 1+/- states: 𝜏~ 10 fs

• 0+
1 state: 𝜏~ 100 ps

• Low lying 2+ states: 𝜏~1ps

Resolution of CeBr scintillator ~200 ps

S. Leoni et al., Phys. Rev. Lett. 118, 162502 (2017)
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Fast-timing techniques for measuring lifetimes

Centroid-shift method may enable sub-picosecond timing.

68Zn states of interest: 

• 1+/- states: 𝜏~ 10 fs

• 0+ states: 𝜏~ 10 − 100 ps

• Low lying 2+ states: 𝜏~1 ps
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Fast-timing techniques for measuring lifetimes

Centroid-shift method may enable sub-picosecond timing.

68Zn states of interest: 

• 1+/- states: 𝜏~ 10 fs ← Just too short-lived

• 0+ states: 𝜏~ 10 − 100 ps May be measurable

• Low lying 2+ states: 𝜏~1 ps
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Multiplicity Cuts
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Utilizing unresolved transitions
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Utilizing unresolved transitions
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Utilizing unresolved transitions
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Utilizing unresolved transitions
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