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RVFJ career spans 1981-present. In that time, we determined the r-process is
universal and then determined it isn’t
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Explosive Astrophysical Environments are Unique and
Fascinating Multi-Physics Laboratories

Novae, X-Ray Bursts, Supernovae, Mergers...

The recurrent nova RS Ophiuchi just went into outburst — its
first burst in 15 years — and it’s bright enough to see with the

naked eye.

The recurrent nova RS Ophiuchi dramatically
brightened from magnitude 11.2 to 4.8 over August
8-9, 2021. The outburst image was taken on August
9.42 UT and paired with an older photo from the
Palomar Observatory Sky Survey (POSS) from July
1989 when the star was at minimum. Ernesto Guido,

Marco Rocchetto & Adriano Valvasori / telescope.five

A star that normally slumbers around 12th magnitude suddenly "woke up" seven magnitudes
brighter this past weekend. Now you can see it with the naked eye!

all are driven by nuclear reactions and decays involving proton-rich, radioactive nuclei
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Stable nuclei

82

! "
p-process i]-*

n
3 i-process |
i
o
a. 50
L
(o]
: % ]
o vp-process /‘H Y I
g A_‘ . fipernova EC process '
= 4a r"' I

rp-process i/ /‘-“._

20 e w :\Iuclt_el known il
| E? o exist P
Stellar fusion Neutron star crust Bulk/stjzt/st/cal )
a | Y decay prob.
- V' ' provess - Level densities
2 |l
2 B 20 28 50 82 126

Number of Ng}'tmns JINA Horizons whitepaper 2020




Novae endpoint nucleosynthesis: 3#K(p,y)
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la-n. Examples of optical spectra of novae in nebular stage

Element Sun QV Vul (1987) V2214 Oph (1988) V977 Sco (1989) V443 Sct (1989)

H 1.00 1.00 1.00 1.00 1.00

He 1.0e-1 1.1e-1 1.9e-1 19e-1 23e-1

N §.5e-5 1.1e3 6.4e-2 59e3 7.8 e-3

0 8.1le4 38e3 I.1e3 37e3 9.0e-4

Ne 1.1e-4 73e-5 25e3 25¢e3 1.4 e-5

S 1.7¢-5 4.1 e-6 9.7e-5 - 24¢-5

Ar 3.7 e-6 - 55e-5 5.3e5 1.8 e-5

Ca 22e6 - 9.4 ¢-5 1.6 e-5 1.0 e-5

Fe 4.2 e-5 23 e-5 6.5 e-4 4.8e-5 2.8e-5

Z 0.019 0.05 0.37 0.08 0.06

Andrea et al, A&A 291, 869
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Spectroscopy of 3¥K(p,y)*°Ca:

putting the cart before the horse
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Ref. E. (keV) FE,. (keV) wvy (meV)
6157(10)  386(10) <2.54
Christian et al. [7] 6286(10) 515(10) <18.4
6450(2)  679(2) 120(25)

The chosen beam energies cover respective center-of-mass
energies in the DRAGON gas target of 386 = 13, 515 % 13,
and 689 + 13 keV. The resonances in question were previ-
ously identified as 5/27 ¥(Ca states through mCa(3He,a)39Ca
[18], *Ca(d,)*Ca [19], and *°Ca(p.d)*Ca [20] transfer
reaction studies. Their recommended excitation energies are
6157 + 10, 6286 = 10, and 6460 =+ 10 keV, corresponding to
K + presonances at 386 + 10,515 £ 10,and 689 + 10keV,
respectively [21]. The respective (p,y ) cone angles for mea-

4w ey W N W T MM T M & WT A

4 = m & wT A

...what’s 10 keV among friends?



Spectroscopy of 3¥K(p,y)*°Ca:
pointing out the horse/cart situation

_ Ref. E. (keV) FE,. (keV) wvy (meV)
Setoodehnia et al, PRC98, 055804 6157(10)  386(10) <954
| - | Christian et al. [7] 6286(10)  515(10) <18.4
I s 3 8 5 | 6450(2) 679(2) 120(25)
Lol & ’ 6154(5) 383(5) <2.6
- 2 o % 1 Setoodehnia et al. [11]  6286(10) 515(10) <18.4
3 _||° ks . : 6472.2(24) 701.3(25) 126(39)
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Spectroscopy of 3¥K(p,y)*°Ca:
careful spectroscopy with

Hall et al, PRC101, 015804 E. (keV) FE, (keV) wy (meV)
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* Spectroscopy of 3#K(p,y)*°Ca:
constraining resonance strengths

Proton single particle spectroscopic factors can be tricky:
- getting good resolution with (d,n)
- getting good res and sufficient target density for (3He,d)

For these N=Z nuclei, let’s measure neutron single particle
spectroscopic factors:
- mirror assignments and MED shifts from fusion
evaporation studies
(with Gammasphere and GRETINA!)
- (d,p) angular distributions straightforward to
measure/interpret
(Jm and spectroscopic factors)
- shell model embedded in the continuum corrections
(neutron SF - proton SF)
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For example:
26Al(d,p)?’Al experiment
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Spectroscopy of 3¥K(p,y)*°Ca: don’t forget the isomer!

3K has a low-lying, large AJ, long-lived isomer
- just like Al

Need to run 3K(d,p) with two different beam settings:
mostly gs and mostly isomer

so that we can differentiate the strength built on each...

These isomers can be populated thermally in an
astrophysical environment, or as the endpoint of beta
decay

(in the case of K™, it's almost 80%!)
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Spectroscopy of 3¥K(p,y)*°Ca: don’t forget the isomer!
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Novae endpoint nucleosynthesis:
3K(p,y) and the necessity for spectroscopy in astro
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Teaching spectroscopy to the next generation of nuclear physicists...
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