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Decay Properties of Neutron-Rich Sc and Ca Isotopes

PHYSICAL REVIEW C 82, 014311 (2010)

B decay and isomeric properties of neutron-rich Ca and Sc isotopes

H. L. Crawford,'? R. V. . Janssens,’ P. F. Mantica,"? J. S. Berryman,'? R. Broda,* M. P. Carpenter,’
N. Cieplicka,* B. Fornal,* G. F. Grinyer,” N. Hoteling,>> B. P. Kay,? T. Lauritsen,’ K. Minamisono,” I. Stefanescu,*”
J. B. Stoker,"* W. B. Walters,? and S. Zhu?
' Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
3Physics Division, Argonne National Laboratory Argonne, Illinois 60439, USA
*Institute of Nuclear Physics, Polish Academy of Sciences Cracow, Poland PL-31342
3 Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
(Received 14 November 2009; revised manuscript received 10 May 2010; published 21 July 2010)

The isomeric and 8-decay properties of neutron-rich **~*’Sc and 3*°*Ca nuclei near neutron number N = 32
are reported, and the low-energy level schemes of 3*336Sc and 33~3Ti are presented. The low-energy level
structures of the ,;Sc isotopes are discussed in terms of the coupling of the valence 1 f;,, proton to states in
the corresponding ,,Ca cores. Implications with respect to the robustness of the N = 32 subshell closure are
discussed, as well as the repercussions for a possible N = 34 subshell closure.

DOI: 10.1103/PhysRevC.82.014311 PACS number(s): 23.40.—s, 23.20.Lv, 27.40.4-z, 29.38.Db
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Decay Properties of Neutron-Rich Sc and Ca Isotopes
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A measurement of the decay of neutron-rich Sc
and Ca isotopes was discretionary time at NSCL
to attempt to measure the decay of %*K into 54Ca

Unfortunately, this objective wasn’t met, but
there was more than enough for a PhD thesis !

Systematic study of the decays into Sc and Ti
allowed level schemes to be explored and
discussion of the potential (at that time)
N=32,34 ‘magic’ numbers



Decay Properties of Neutron-Rich Sc and Ca Isotopes
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The N=34 Shell Closure?
|1 B B B B R

Evidence for a new nuclear ‘magic number’ from the
level structure of *>*Ca

D. Stezppenbeckl, S. Takeuchi®, N. Aoi®, P. Doornenbal®, M. Matsushita®, H. Wang?, H. Baba?, N. Fukuda?, S. Go', M. Honma®,
J. Lee?, K. Matsui®, S. Michimasa!, T. Motobayashi?, D. Nishimura®, T. Otsuka®®, H. Sakurai®®, Y. Shiga’, P.-A. Soderstrom?,
T. Sumikama®, H. Suzuki?, R. Taniuchi®, Y. Utsuno®, J. J. Valiente-Dobdn'® & K. Yoneda?

doi:10.1038/nature12522
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The N=34 Shell Closure?
|1 e B B R

doi:10.1038/nature12522

Ev

ley PHYSICAL REVIEW C 96, 064310 (2017)

D. Ste Structure of >>Sc and development of the N = 34 subshell closure
I. leg

T. Sur

D. Steppenbeck,'-* S. Takeuchi,” N. Aoi,? P. Doornenbal,! M. Matsushita,* H. Wang,! H. Baba,' S. Go,*' J. D. Holt,” J. Lee, !}
K. Matsui,® S. Michimasa,* T. Motobayashi,' D. Nishimura,” T. Otsuka,*® ' H. Sakurai,"-® Y. Shiga,® P.-A. Soderstrom,"*
S. R. Stroberg,’ T. Sumikama,”’-' R. Taniuchi,"-® J. A. Tostevin,'? Y. Utsuno,!! J. J. Valiente-Dobén,'? and K. Yoneda!

The results indicates a rapid weakening of the N=34
subshell closure in pf-shell nuclei at Z > 20, even when only
a single proton occupies the rf;,, orbital.
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The N=40 Island of Inversion
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The N=40 Island of Inversion
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The N=40 Island of Inversion
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The N=40 Island of Inversion with GRETINA

Direct Lifetime Measurements of the Excited States in 72Ni - K. Kolos et al. (2016)

|dentification of deformed intruder states in
semi-magic "°Ni — C. Chiara et al. (2015)
Neutron knockout from 68.70Nj — F. Recchia et

-----

al. (2016)
26 . Probing the role of proton cross-shell
excitations in 7°Ni — B. Elman et al. (2019)

stable .

B- decaying [ | Structure of %Fe — A. Gade et al. (2019)

Coulomb Excitation of 7°Fe — E. Rice et al.
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In-beam y-ray spectroscopy of 62.64Cr - A. Gade et al. (2021)
In-beam spectroscopy reveals competing nuclear shapes in 92Cr — A. Gade et al. (2024)



GRETINA and GRETA

*  The physics impact of GRETINA over the past
> 10 years has been substantial

*  GRETINA was constructed 2003-2011, with a
subsequent “enhancement” phase

*  GRETA, the full 47 realization of a tracking
array received CD-4A in August and will start
source commissioning at FRIB in the next few
months

* Robert has been a vocal supporter and
advocate for GRETA since the beginning

Crawford | RVFJ Symposium



Triaxiality in Ge

« Above the N=40 lol, "Ge has been a focus across nuclear physics as a candidate for
OvBpB decay, which highlighted the need to understand the structure in this (and
neighbouring nuclei) to reliably calculate the necessary nuclear matrix elements

- The Ge isotopes in this region were known to have complex wavefunctions and

variation in their excitation spectra; theory predictions also suggested the importance
of triaxiality

«  GRETINA + CHICOZ2 at ATLAS offered a path forward to characterize, in detail these
systems using Coulomb excitation

A.D. Ayangeakaa, R. V. F. Janssens et al., Phys. Rev. C 107, 044314 (2023).



Triaxiality in Ge

b - e - Coulomb excitation of 76Ge, detailed GOSIA

300 analysis and comparison to theory/model
e predictions confirmed a rigid triaxial deformation
g ok . s «=~34  This contrasts with the soft triaxial potential in "°Se
RN . i which will impact NME important to 0vBp

Ge , %
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Triaxiality in Ge

« Experiments in neighouring 7274Ge further
confirmed the importance of triaxiality, suggesting
triaxial shape coexistence between the two lowest
0* states in both systems

A.D. Ayangeakaa, R. V. F. Janssens et al., Phys. Lett. B 754, 254 (2016).
N. Sensharma et al., Phys. Rev. C 112, 024311 (2025).
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Octupoles in Ba

- The neutron-rich Ba isotopes are one region of the chart where octupole correlations
were expected, with 56 protons and 88 neutrons in '44Ba, two ‘octupole magic numbers’
where single-particle states separated by 4l=4j =3 orbitals are near the Fermi surface

Before 2016, only indirect evidence for octupole correlations in the Ba isotopes had been
observed (e.g. enhanced E1 transitions between g.s. and negative-parity band)

Enter CARIBU + GRETINA + CHICOZ2...



ATOF [100 ps]

Octupoles in Ba

Coulomb excitation of '44Ba, and the yield of the gamma rays depopulating the 3- and
related states enabled extraction of a E3 matrix element

The value of B(E3:3- — 0*) = 4833 W.u. was much higher than model predictions,
motivating further measurements in neighbouring isotopes (e.g. '#3Ba), and additional
measurements in 44Ba
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Summary

* The range of collectivity and deformation across the nuclear chart is broad, with
variation in both the origin and nature of the emergent structures

* Robert has had a similarly broad impact in our community




Summary

* The range of collectivity and deformation across
the nuclear chart is broad, with variation in both
the origin and nature of the emergent structures

* Robert has had a similarly broad impact in our
community... and at the same time never lost
sight of the details
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Summary

The range of collectivity and deformation across
the nuclear chart is broad, with variation in both
the origin and nature of the emergent structures

Robert has had a similarly broad impact in our
community.
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Thank you
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