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Genesis: “l don’t know
John, that sounds a little
crazy...”

The conversation took place somewhere
around here...
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Transverse solenoid recycled from old
MSU K50 cyclotron
B=300 G (.03T)




Why?
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d{'*Xe, p)'Xe. 9 is the laboratory angle.
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For Something that would become RIA

4. Magnetic Spectrographs
4.3 Very Large Acceptance Options ~Phase Il

There are other possible geometries for magnetic spectrographs that are quite different from
the conventional ones considered above. These alternative geometries provide the possibility
for acceptances in the steradian range; i.e., about an order of magnitude more than the conven-
tional designs. The two basic types of these very large- acceptance devices that have been used
to some extent in the past are based on solenoidal and toroidal geometries. No detailed design
studies for either of these classes of spectrograph have been carried out for charged-particle
reaction studies at ISOL facilities. The possibilities of such devices in this context appear to
be quite interesting and they are worthy of further study.
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a) Solenoidal Geometry

A magnetic solenoid with its axis oriented along the beam direction could serve as a very large-
acceptance magnetic spectrograph for low-energy light particles from inverse reactions such as
d(***Sn,p)'**Sn. In this case the protons of interest are emitted in the backwards hemisphere
with energies of 1-10 MeV. The particle energy measurements are done via silicon detector
barrels surrounding the beam axis. This type of magnetic spectrograph deserves further study.




What do we need to Establish
the Single-Particle Structure of
Exotic (Neutron-Rich) Nuclei

John Schiffer
Argonne Nat'l. Lab
&
Alan Wuosmaa
Western Michigan University

RIA Equipment Workshop
ORNL March 19, 2003



)

/,—\ . > - -.:\_',-:--\ ;. -4‘ UT—BATTELLE
@1\ reporter
\\"'_ & 9 N (!- _-'_‘_r. -.'- Numbor 48 Mﬁ)fma

I |
OAK RIDGE NATIONAL LABORATORY ¢ U,$. DEPARTMENT OF ENERGY

aFire ants on the ORR
Thev4pre he-re. Fire ants, those stinging, slashing ants feared throughout the Southeast, have been found on the ORR. A mound was discovered near the old guard station on the east end of Bethel Valley Road. Following their positive
identification as Solenopsis invicta by UT etymologists, the area of the colony was roped off in preparation for a coming €shock and awe€p insecticide campaign.

Fire ants are an introduced species that, thanks to warmer winters, have been making their way north. They are aggressive, sting rele tlessly and are prone to mass attacks when provoked. The South American
import can harm livestock. humans and crops. Their mounds, which can reach about 10 inches in height and a foot in diameter, us don4pt have discernible entrances.

If you find what you think might be a fire ant colony on the ORR (excluding Y-12 and ETTP properties), contact Pat Parr at 576-812° | If vou should stumble onto a colony, best advice from the Lab@s
Environmental Protection group is, €Run!€

OE facilities| vere dispelled in April when the Lab4ps on-line news page, ORNL Today, e

aFire ants on the ORR
They€pre he-re. Fire ants, those st Fire ant

identification as Solenopsis invicte

roped off in preparation for a coming @shock and awe€) insecticide campaign.



d(32Sn,p) kinematics (at 8A MeV)
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Schematic design

Solenoid

Low energy p,t

Forward angles

RIA Equipment Workshop
ORNL March 19, 2003
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NPA 746 267c (2004)



Solenoid 6

Transport S
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Real states in 133Sn
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HELIcal Orbit Spectrometer -HELIOS

John Schiffer’s acronym: SOIREE
SOlenoid for Inverse REaction
Experiments

“A fancy evening affair”

HELIOS

Byax=2.85T

Recoll
Detectors

J.P. Schiffer, RIA equipment workshop 1999
AHW et al., NPA 746, 267c (2004)

AHW et al., NIMPRA 580, 1290 (2007)

J. C. Lighthall et al.,, NIMPRA 622, 97 (2010)

X-Y-0 positioni
stage




HELIOS: From Scanner to Spectrometer

November 2006

Tubingen, Germany Argonne, USA

December/January 2007




Birger Back managed
the project throughout







Early view of the silicon-detector array




HELIOS at

HELIOS  [Sagmas SUS




SINGLE-NEUTRON ENERGIES OUTSIDE *Xe
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Fig. 2: Energy spectrum of pratons emitted in the reaction

d{'*Xe, p)'*Xe. 9 is the laboratory angle.
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Different
Versions

CHAMP

DANGER
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Les scientifiques de
I'installation ISOLDE au CERN
étudient comment la matiére
se comporte et se transforme,

notamment au cceur des étoiles.

Scientists use experiments at
CERN’s ISOLDE facility, pictured,
to study how matter behaves
and transforms, including inside
stars.

Sommes-nous faits de
poussiére d'étoiles ?
Lorsque les étoiles brdlent,
elles fabriquent des atomes

de plus en plus lourds par la
fusion d'atomes légers. En fin
de vie, les étoiles trés massives
explosent en supernova,
produisant des atomes encore
plus lourds et les éjectant

dans |'espace pour former la
prochaine génération d'étoiles,
de planétes et... la vie. La
plupart des atomes qui nous
constituent ont été produits par
les étoiles.

Are we made of
stardust?

As stars burn, they produce
increasingly heavier atoms
through the fusion of lighter
atoms. When massive stars run
out of fuel, they explode in a
supernova, producing yet heavier
atoms, ejecting them out into
space to eventually form the next

| generation of stars, planets, ...

and life. Most of the atoms in our
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Laboratory collaboration |
on SOLARIS instrument  wew

Michigan State University Facility for Rare

Isotope Beams

bears fruit 1

Office: 517-908-7262

The world’s first solenoid spectrometer of its kind jvas built at FRIB through cross-institutional
expertise. The first results from the SOLARIS instrument further scientists’ understanding of
rare isotopes.
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Counts per channel

D. K. Sharp et aI PRC 87 014312 (2013)

o (d,p) heavy nuclei
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J. Chen et al., PRC 100, 061314 (2019)

counts / 0.125 MeV

d.c.s. [a.u.]

70
60
50
40
30
20
10

Ok

0.32 MeV

12B(d,3He)!1Be

2.65 MeV
3.89 MeV

2

E, (MeV)
T. L. Tang et al., PRC 105, 064307 (2022)

2 60 (a) —Exp ]
= a0l — 16N™ (g, 3He)5C
_-ci ..... 16Ng (d, SHe)ISC
< 20r -
8 \J
0 B [ " I Py R
-7 -6 -5 -4 -3

0.5

0.1
0.05

0.01

10

AHW et al., PRC 90,

061301(R) (2014)

20001 T T T 7T 1
" (a)
> 1500 -
.4
o
o 36 ( 3 )35
$ 1000 -
2 S d, He)>-P
8 1 —
O 500 — £
o
| <
~ 100 L
0 | 1 I JLE
i b)- g
8 ( —1 0
3| 3
10 |
Q6 57
> S
[2]
El : o 200
o - e Q -
Q5 all 7 S
ol L I ] g 150}
I c(d,)*B ] N
> C —
= 13B—)*,/,Zn ( )_ w 100 |
26 : 2z
o B X AL~ 1
S, [ 1 ] S sof |
£ L ot 2l sen) | ]
1 : ‘ - gl
ol Ay 0, Wl |
14 -12 -10 -8

6

Q Value (MeV)

Isomeric
beam!

4 2 0 2

Nucleon Removal

M. Salathe et al., PRC 102, 064317 (2020)

4Y. C. Jiang et al,,

600
so0f  (a)
2 a0k
k>
15 14, Z,=352mm
> (]
300 C C
o (p.d)
S 200F
=
Q
O 100F
0 ‘ ‘ L .
15 1.0 0.5 0.0 05 1.0 1.5
140 T T T T T
1208 (b)
E 100 [ 7 =332mm
15 14 FWHM=283keV
S sof Cdn"C 4], PWHM-283ke
- (=272mm
g 60F FWHM=25TkeV
2 40f
@)
20F
0 " 2, " il LT
-15 1.0 0.5 0.0 0.5 10 1.5

Ex (MCV)

" Fit (known states)
Measured spectrum

PLB 868 (2025)

do/dQ (mb/sr)

9\9&)@0&0 3&60 %663195700
Excitation energy [keV]

T
(c)
100 & e
g o T e
+ = .. _
=
1k i el J
F s 3
E ® SCd)c 3
i B e N
—— DWBA (Koning + Zhang)|
0.1 = —— DWRA (Koning + An) o
E == DWBA* (Varner + Han) 7
- DWBA {Zhang + Trost) B
- DWBA {An + Pang) -
DWBA® {Zhang + Trost)
0.01 1 T T !
0 10 20 30 40

0, (deg)




(In)elastic scattering

S. A. Kuvin et al., PRC 96, 041301(R) (2017)
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Fission!
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HELIOS: Dual array mode — a long time coming

A cartoon of the dual-array mode was used in the 2007 NIM*, and is the foundation of the SOLARIS
proposal; however, the dual-array mode had never been used in practice ... until now (proposals accepted at
FRIB for SOLARIS)
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The Poster Child: 13?Sn(d,p)*33Sn
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Very preliminary: From 15t day of beam!

K. L. Jones(véhf:)oal., Nature,
465, 454 (2010)
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Solenoidal spectrometers, past 15 yrs

Solenoidal spectrometers have proven to be a highly versatile

approach to studvine nuiclear reactione far <triictiire astronhvsics XX A% 20
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