Recent developments at the OMEGA platform for deuterium and tritium beams

Tritiated converter Physics target T-beam $\sim \sim$ 2×10^{18} W/cm² laser pulse

Arnold Schwemmlein University of Rochester/CMAP

Nuclear Photonics 2023 September 13, 2023

Collaborators

Laboratory for Laser Energetics and University of Rochester

J Knauer, V. Glebov, U. Schroeder, C. Forrest, S. Regan, W. Shmayda, B. Stanley, C. Stoeckl

Los Alamos National Laboratory G. Hale, M. Paris

Imperial College

B. Appelbe, A. Crilly, N. Dover

Lawrence Livermore National Laboratory

J. Williams, M. Selwood

SUNY Geneseo

S. Padalino, C. Freeman

Houghton University M. Yuly

A platform for tritium beams is under development at OMEGA

- Deuterium beams are strong enough to study reactions with cross sections around 100mb, such as ${}^{9}Be(d,n){}^{10}B$ and ${}^{7}Li(d,n){}^{8}Be$
- Tritium beams are strong enough to induce ${}^{2}H(t,n){}^{4}He$ (5b), but the yields are currently too low for other reactions
- Laser pulseshapes are developed to make more of the tritium in the targets accessible (10¹⁶ tritons are in the target but only 10¹² in the beam)
- A new lithium activation diagnostic is being developed that can handle lower reaction yields

Motivation

Tritium reactions like T(t, 2n) α , ⁶Li(t, p)⁸Li and ⁹Be(t, p)¹¹Be produce exotic neutron rich nuclei

Tritium reactions to be studied on this platform

Reaction	Triton	То Ве	Interest
	energies	Measured	
³ H(t, 2n) ⁴ He	< 1 MeV	dơ/dE _n	Commissioning, neutron standard
	1 – 5 MeV	$d\sigma(E_t)/dE_n$	⁶ He resonances
⁶ Li(t, p) ⁸ Li	~1 MeV	$d\sigma(E_t)/dE_p$	Pair transfer, A=8 ab initio structure
⁷ Li(t, α) ⁶ He*	> 6 MeV	$d\sigma(E_t)/dE_{\alpha}$	⁶ He resonances in p pickup
⁶ Li(t, ³ He) ⁶ He*	> 6 MeV	do(Et)/dE	⁶ He resonances in p pickup
⁹ Be(t, p) ¹¹ Be	~1 MeV	$d\sigma(E_t)/dE_p$	Pair transfer, A=11 ab initio structure
¹⁹⁷ Au(t, p2n) ¹⁹⁷ Au	~10 MeV	$d\sigma(\theta, E_t)/dE_n$	t breakup, search for ³ H* state
A(t, p)B	~1 MeV	dơ/dE _n	Neutron pair transfer

UR

Target Normal Sheath Acceleration (TNSA) can generate multi-MeV ion beams with miniaturized setups

- A target containing $\sim 10^{16}$ tritons is irradiated by a $\sim 10^{18} W/cm^2$ pulse
- Several processes transfer energy from the laser to electrons and then to ions
- Studies with deuterated and tritiated targets have shown total yields around ${\sim}10^{12}$ particles at energies of several MeV

A Thomson Parabola and radiochromic film were used to characterize the beam

Our targets still predominantly accelerate protons, which reduces the deuteron acceleration

- Protons accelerate faster, thereby shielding heavier ions from electrons so most of the deuterium remains unused
- Even a short (<1s) ambient air exposure will grow a thin water-layer on the target
- Air exposure in the target chamber is unavoidable, therefore, the target has to be cleaned in-situ

A custom pre-pulse has been developed for OMEGA-EP to clean our TiD₂ targets in-situ

- A 0.7ps, 10¹⁷ W/cm² prepulse hits the target, creating ~100keV electrons
- This weak sheath accelerates the surface protons, leaving only the deeper sitting deuterium/tritium
- The main pulse (10ps, 10¹⁹ W/cm²) hits 10ps later, when there is still a large density gradient at the target

Deuteron and triton beam spectra are exponential with energies exceeding 10MeV

Neutrons from nuclear reactions are measured using the OMEGA/OMEGA-EP nTOFs

OMEGA deuterium beam on ⁷*Li* produced a neutron spectrum with recognizable features

OMEGA tritium beam on deuterium produced the expected DT fusion neutrons

UR LLE

ROCHESTER

A new lithium activation diagnostic was designed to handle lowyield experiments

The detector exploits the ⁷Li(d, p)⁸Li reaction with a cross section of ~150mb from 0.5 to 5 MeV

 Activation favors fast experiments since the nuclei do not have the time to decay, increasing signal/noise

ROCHESTER

The new diagnostic was successfully tested on the downscaled MTW facility

- CD targets were used to produce 10¹² deuterons with mean energy ~0.8MeV
- 6000 β events from the decay of ⁸Li were detected
- Experiments on OMEGA with deuterium/tritium have been proposed

A platform for tritium beams is under development at OMEGA

- Deuterium beams are strong enough to study reactions with cross sections around 100mb, such as ${}^{9}Be(d,n){}^{10}B$ and ${}^{7}Li(d,n){}^{8}Be$
- Tritium beams are strong enough to induce ${}^{2}H(t,n){}^{4}He$ (5b), but the yields are currently too low for other reactions
- Laser pulseshapes are developed to make more of the tritium in the targets accessible (10¹⁶ tritons are in the target but only 10¹² in the beam)
- New diagnostics are being developed that can handle lower reaction yields

Backup

OMEGA deuterium beam on ⁹Be produced a neutron spectrum with recognizable features

TPIE filter* effectively removed all heavy species

