Laser Compton Sources: Present and Envisioned

Ying K. Wu

Department of Physics, Duke University Triangle Universities Nuclear Laboratory September 11, 2023

Work supported by U.S. DOE Grant: DE-FG02-97ER41033

Acknowledgment:

To researchers of the worldwide accelerator and laser communities who contributed to the development of Compton photon sources.

Credit will be given on individual slides.

- Physics of Compton Photon Sources
- Recent Developments at HIGS
- Compton Photon Sources around the World
 - Operational Sources/Facilities
 - Projects under Development
 - Future Gamma-ray Sources for Nuclear Physics Research

Spectrum of Electromagnetic Radiation

TUN

Compton Scattering

Compton Scattering Arthur H. Compton (1892 – 1962) Discovery: 1923 Nobel Price for Physics: 1927

$$\lambda_f - \lambda_i = \frac{h}{m_e c} (1 - \cos \theta)$$

http://fishbein.uchicago.edu/courses.html
 http://missionscience.nasa.gov/ems/12_gammarays.html

A.H. Compton, Bull. Nat. Res. Council (US) 20 (1922) 19; Phys. Rev. 21 (1923) 483.

C. Sun and Y. K. Wu, Phys. Rev. ST Accel. Beams 14, 044701 (2011)

Compton Photon Beam Flux

Energy Distribution of Compton Gamma-beam

8

TUN

Recent Developments at HIGS

- Pulsed Mode Operation
- Two-color FEL
- Polarization Control
- High-energy Beam Development: 120 MeV
- Twisted Photon Beams

High Intensity Gamma-ray Source (HIGS)

Facility/Project: High Intensity Gamma-ray Source (HIGS) Institution: TUNL Country: United States Accelerator: Storage Ring, 0.24–1.2 GeV Laser: FEL, 1060 – 175 nm (1.17–7.08 eV) Photon energy (MeV): 1–120 Resolution: 2–5% (FWHM, high flux), 0.6% (FWHM, best) Total flux: 10⁷–4x10¹⁰ ph/s (max ~10 MeV) Status: Operational + User Program + Development Research: Nuclear physics, Astrophysics, Applied Research

CONDON-

Storage Ring

Accelerator Facility 160 MeV Linac pre-injector 160 MeV–1.2 GeV Booster injector 240 MeV–1.2 GeV Storage ring FELs: OK-4 (lin), OK-5 (cir) HIGS: two-bunch, 40–120 mA (typ)

Contributors to HIGS R&D (2008–2023): M. Busch, M. Emamian, J. Faircloth, B. Jia, H. Hao, S. Hartman, C. Howell, S. Huang, B. Li, J. Li, W. Li, P. Liu, E. Martin, S. Mikhailov, M. Pentico, V. Popov, C. Sun, G. Swift, B. Thomas, E. Vajzovic, P. Wang, P. Wallace, W. Wu, Y. K. Wu, W. Xu, J. Yan

300stel

HIGS: Gamma Energy Tuning Range with OK-5 FEL (3.5 kA)

HIGS Flux Summary

Gain Modulation with RF—FEL Macropulse Operation

- Rapidly and periodically change f_{RF}
 - $Df_{RF}/f_{RF} \sim 10^{-5}$
 - Transition in 10s of microseconds
 - Duration for a few milliseconds
- Rep-rate: few to tens of Hz, depending on operational conditions
- About the same average FEL power
- Good beam stability and lifetime
- Type of user experiments Detector calibration with low background

HIGS New Capabilities: 2-Color FEL

week ending 30 OCTOBER 2015 PHYSICAL REVIEW LETTERS PRL 115, 184801 (2015) S Widely Tunable Two-Color Free-Electron Laser on a Storage Ring Y. K. Wu,* J. Yan, H. Hao, J. Y. Li, S. F. Mikhailov, and V. G. Popov FEL Laboratory, TUNL and Department of Physics, Duke University, Durham, North Carolina 27708-0319, USA N.A. Vinokurov Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia S. Huang Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China J. Wu SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA (Received 15 August 2015; published 26 October 2015) Y.K. Wu et al. PRL 115, 184801(2015) J. Yan et al. PRAB 19, 070701 (2016) Lasing Phasespace

HIGS New Capabilities: Precision Polarization Control

New Gamma-ray Capability in Polarization Control

Precision control of gamma-ray polarization:

two crossed helical undulators ==> FEL and gamma-ray beams with linear polarization in any direction

- Linear polarization, P_{Lin} > 0.97 for gamma-ray (P_{Lin} > 0.99 for FEL)
- Available: 3 30 MeV
- Impact on nuclear physics research:
 - Experiment can rapidly access gamma-ray beams with variable polarization: left- and rightcircular, linear with changeable direction
 - Allow for the exploration of polarization-dependent nuclear observables
 - Significantly reduce systematic errors in measurements.

HIGS New Capabilities: Helicity Switch

(a)

From Jun Yan's dissertation (2016)

HIGS New Capabilities: 120 MeV Production with VUV FEL

Gamma Spectra, Max E_y = 45, 60, 120 MeV

HIGS: FEL/CGS Research: Orbital Angular Momentum Beam

OAM FEL Research Collaboration: Y.K. Wu, P. Liu, J. Yan, H. Hao, S.F. Mikhailov, V.G. Popov (Duke/TUNL); S. Benson (JLab), A. Afanasev (GW) This work is partially supported by U.S. DOE Grant: DE-FG02-97ER41033.

Monday afternoon talk: Peifan Liu, et al, Experimental study of orbital angular momentum beams using a free-electron laser oscillator

OAM laser beam + relativistic electrons

OAM x-ray/gamma rays via Compton backscattering

New selection rules, strong dichroism, etc.

- X-ray spectroscopy in orbital physics and magnetism
- Nuclear spectroscopy
- Nuclear resonance fluorescence
- Nuclear photoionization
- Probe for hadron structures

Challenges remain:

- Can Compton scattering produce OAM gamma rays efficiently?
- How to improve the production rate of OAM gamma rays?

D. Seipt *et al.* "Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light," PRA 90, 012118 (2014).

HIGS User Research Programs

TUN

Nuclear Structure and Nuclear Astrophysics TUNL Groups:

- (a) M. Ahmed, NCCU
- (b) C. Howell, W. Tornow, Y. Wu, Duke Univ.
- A. Ayangeakaa, A. Champagne, C. Iliadis, R. Janssens, H. Karwowski, UNC

External Researchers: 32 institutions: 11 USA + 21 International

- Clover-Share Collaboration: 0
 - 17 institutions = 7 USA + 10 International
- Photon-induced Nuclear Reactions: 20 institutions + TUNL
- Other smaller collaborations

Low Energy QCD

TUNL Groups:

- (a) M. Ahmed, B. Crowe, D. Markoff, NCCU
- (b) H. Gao, C. Howell, W. Tornow, Y. Wu, Duke Univ.
- (c) H. Karwowski, UNC
- (d) A. Young, NC State Univ.

External Researchers: 14 institutions: 9 USA + 5 International

Compton Photon Sources around the World

Operational Sources/Facilities

Projects under Development

Future Gamma-ray Sources for Nuclear Physics Research

Facility/Project: Tsinghua Thomson Scattering X-ray Source (TTX) Institution: Tsinghua University Country: China Accelerator: S-band linac w. photoinjector, 20–50 MeV. 500 pC Laser: Ti:Sapphire, 800 nm, 500 mJ/50fs/10 Hz Photon energy (keV): 20–55 keV Total flux (measured): > $3x10^8$ ph/s, Lin/Cir/Elliptical Best resolution: ~ 5% (FWHM) Status: Operational + Development

in 20 min.

Direct X-ray beam pattern and diffraction pattern with HOPG crystal

In-line phase contrast imaging with TTX (24keV)

Mono-energetic X-ray CT imaging with TTX (24keV)

Munich Compact Light Source (MuCLS)

A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OW

Sources:

B. Gunther *et al.* J. Syn. Rad, 27, p. 1395 (2020) G. Kraff and G. Priebe, Rev. Acc. Sci. & Tech. V3, 147 (2010). R. Ruth, http://www.eurekalert.org/pub_releases/2009-01/ltifsf010609.php Facility/Project: Munich Compact Light Source (MuCLS) Institution: Technical University of Munich Country: Germany Commercial product: Lyncean Technologies Inc. Accelerator: Storage ring, 29–45 MeV, 16 mA Laser: Nd:YAG 1064 nm, 350 kW (intracavity) Photon energy (keV): 15–35 Total flux (measured): 1.5×10^{10} ph/s (15 keV), 4.5×10^{9} (35 keV) Resolution: 3% (15 keV) to 5% (35keV) (FWHM) Status: Operational + User Program Research: Imaging, X-ray absorption spectroscopy (XAS), Microbeam radiation therapy

UVSOR Synchrotron Facility

NewSUBARU Synchrotron Light Facility

Facility/Project: NewSUBARU, BL01 Institution: Laboratory of Advanced Science and Technology for Industry (LASTI), University of Hyogo Country: Japan Accelerator: NewSUBARU Storage ring, 0.5–1.5 GeV, 400mA Laser: 532 nm, 1064 nm, 10.6 µm, etc. Photon energy (MeV): 0.5 – 76 MeV Total flux (measured): $10^6 - 10^9$ ph/s Best resolution: 1.4% (FWHM) Status: Operational + User Program Research: Gamma source R&D, photonuclear reactions, nuclear transmutation, positron generation, detector calibration, and materials research

- Variable stored electron energy (0.5–1.5 GeV).
 Arbitrary gamma ray energy desired by the user.
- Top-up operation at various energy (0.5–1.0 GeV). The intensity of gamma rays remains constant overtime.

SLEGS, Shanghai Advanced Research Institute (SARI)

TUN

High Intensity Gamma-ray Source (HIGS)

Facility/Project: High Intensity Gamma-ray Source (HIGS) Institution: TUNL Country: United States Accelerator: Storage Ring, 0.24–1.2 GeV Laser: FEL, 1060 – 175 nm (1.17–7.08 eV) Photon energy (MeV): 1–120 Resolution: 2–5% (FWHM, high flux), 0.6% (FWHM, best) Total flux: 10⁷–4x10¹⁰ ph/s (max ~10 MeV) Status: Operational + User Program + Development Research: Nuclear physics, Astrophysics, Applied Research

CONDON-

Storage Ring

Accelerator Facility 160 MeV Linac pre-injector 160 MeV–1.2 GeV Booster injector 240 MeV–1.2 GeV Storage ring FELs: OK-4 (lin), OK-5 (cir) HIGS: two-bunch, 40–120 mA (typ)

Contributors to HIGS R&D (2008–2023): M. Busch, M. Emamian, J. Faircloth, B. Jia, H. Hao, S. Hartman, C. Howell, S. Huang, B. Li, J. Li, W. Li, P. Liu, E. Martin, S. Mikhailov, M. Pentico, V. Popov, C. Sun, G. Swift, B. Thomas, E. Vajzovic, P. Wang, P. Wallace, W. Wu, Y. K. Wu, W. Xu, J. Yan

300stel

LEPS2, SPring-8

 $E_{\gamma}[\text{GeV}]$

Facility/Project: LEPS2 Institution: SPring-8 Country: Japan Accelerator: Storage Ring, 7.975 GeV Laser: 355 nm (3.49 eV), 266nm (4.66 eV) Photon energy (GeV): 2.39 (355 nm), 2.89 (266 nm), lowest: 1.3 GeV Total flux (measured): a few 10⁶ ph/s (~ 2 10⁶ tagged) Resolution: 12.1 MeV (RMS, tagging) Status: Operational + User Program Research: Hadron structure and interactions Note: LEPS2 supersedes LEPS (1999–2021)

Courtesy of Norihito Muramatsu and Takatsugu Ishikawa, SPring-8 Ref: N. Muramatsu *et al.*, NIMA 1033, 166677(2022).

Compton Photon Sources around the World

Operational Sources/Facilities

Projects under Development

Future Gamma-ray Sources for Nuclear Physics Research

ThomX

Facility/Project: ThomX Institution: ThomX Consortium Site: Irene Joliot-Curie Laboratory (IJCLab), Paris-Saclay University Country: France Accelerator: Storage ring, 50 - 70 MeV Energy (keV): 45 - 90Laser: FB-Cavity (1030 nm), 1 MW (F~3x10⁴) Total flux: $10^{12} - 10^{13}$ ph/s (design) Phase I: 100 kW, 10^{10} ph/s (design), 45 keV (design) Status: Under construction Applications: imaging, mammography, microtomography

Parameters	Typical values	
Laser repetition frequency	33.3 MHz	
Laser wavelength	1031 nm	
Laser pulse temporal length	50 ps rms	
Cavity optical length	8.994 m	
Cavity finesse	30 000	
Cavity waist size	80 µm	
Injected power	100 W	
Circulating power	600 kW	
X-rays flux	10 ¹³ photons/s	

Sources: 1. K. Dupraz *et al.* "The ThomX ICS source," Physics Open 5, 100051 (2020). 2. F. Pierre (2015) https://thomx.ijclab.in2p3.fr/wp-content/uploads/sites/21/2021/02/2015_Study-and-conception-of-a-high-finesse-Fabry-Perot-cavity-for-the-compact-X-ray-source-ThomX.pdf

Laser-plasma Compact MeV Compton Photon Source, LBNL

Laser currently at Room/truck scale

- kHz fiber laser in development for even smaller sizes
- cm-scale accelerator enables
 - compact system at high photon energies
 - deceleration after scattering for applications

Acceleration to 0.4 GeV class in centimeter distance

Photon energy via

Facility/Project:

Institution: Lawrence Berkeley National Lab Country: United States

Accelerator: Laser-plasma acccel. 50–400 MeV, 10s pC Laser: (scatter) Ti:sapphire 800 nm, 500 mJ, 50 fs, 5 Hz

Photon energy (GeV): 0.1–2 MeV, with 9 MeV in progress Total flux (measured): 10⁷ ph/shot Resolution: 10%–50% (FWHM) Status: Development + Test experiments Research: Path to 1% energy spread, higher flux, deceleration to reduce shielding requirements

High resolution radiography

Other research areas

- Sub-mm 3D MeV tomography
- Time of flight backscatter single-view 3d imaging

1: Final report of project "Impact of Monoenergetic Photon Sources on Nonproliferation Applications ," C. Geddes, B. Ludewigt, J. Valentine, B. Quiter, M.-A. Descalle, G. Warren, M. Kinlaw, S. Thompson, D. Chichester, C. Miller, S. Pozzi (2017)

31

Ultrahigh Laser-plasma Fields (>10 GV/m) Enable Compact Accelerators – GeV in cm

2019: 8 GeV record

DETERMINATION: Laser-Compton Sources for Nuclear Photonics, Irvine, California

DETERMINATION:

Development of Equipment and Technologies for Elemental Radiography, Micron-scale Imaging, Nuclear Assessments & Transportable Interrogation of Objects Nondestructively Performance Targets and SWaP Goals Tunable from 10 keV to 3 MeV >10¹² photons/second & < 0.1% bandwidth Must fit within a standard 40 ft container Must be compatible with air transport Must operate with on less than 300 kW

In 2020, DARPA's Gamma-Ray Inspection Technologies (GRIT) program: to create the world's 1st compact, high-brilliance, MeV capability - Performance well <u>beyond</u> the needs of commercial markets

Keys to Lumitron's approach

- High-gradient, x-band (11.424 GHz) linacs
- High-power, compact x-band klystrons
- RF pulse compression of klystron output
- RF pulse synthesis of laser pulse trains
- High-current & brightness photo-guns
- High-average power, UV interaction lasers
- Imaged recirculation of UV laser pulses
- Source-matched, diffraction-based filters

Control Conclory

Courtesy of C. P. J. Barty, University of California, Irvine and Lumitron Technologies, Inc.

VIGAS, Tsinghua University

Facility/Project: Very Compact ICS Gamma-ray Source (VIGAS) Institution: Tsinghua University Country: China Accelerator: S-band photoinjector + X-band linac (~14 m) 90–350 MeV, 200 pC, 10 Hz Laser: Ti:Sapphire, ~1.5J@800nm, 0.8J@400 nm, BW 10 nm, 10 Hz Photon energy (MeV): 0.2–4.8 MeV Total flux (design): > 4x10⁸ ph/s (0.2–2.4 MeV), > 1x10⁸ ph/s (2.4–4.8 MeV), controllable Pol Best resolution: ~3 % (FWHM) Status: Under construction (2021–2025)

γ-ray energy: 0.2-4.8MeV Bandwidth with collimator : <1.5% Total photon flux(ph/s): >4×10⁸@0.2-2.4MeV; >1×10⁸@2.4-4.8MeV Photon flux with 1.5% Bandwidth(ph/s): >4×10⁶@0.2-2.4MeV; >1×10⁶@2.4-4.8MeV controllable polarization from linear to circle

XGLS, Tsinghua University

Compton Gamma-ray Sources: VEGA System, ELI-NP

Facility/Project: Variable Energy Gamma-Ray (VEGA) System Institution: Extreme Light Infrastructure, Nuclear Physics Country: Romania Energy (MeV): 1 - 10 (1030 nm); 2 - 19.5 (515 nm) Accelerator: Storage ring Laser: IR laser: 1030 nm; Green laser: 515 nm Total flux: > 1.1×10^{11} ph/s, > 5.0×10^{3} ph/s/eV Status: Under development

Courtesy: Catalin Matei (ELI-NP), Benjamin Hornberger and Ronald Ruth (Lyncean Tech.)

Last update: 2020

Compton Photon Sources around the World

Operational Sources/Facilities

Projects under Development

Future Gamma-ray Sources for Nuclear Physics Research

Conventional Accelerators: Electron Beam and Photon Beam Sources

E-beam Sources	X-ray	Gamma-ray	Comments
Storage Ring	Several	Common	High reprate Gamma-ray: large charge in a bunch, good emittance, expensive
Linac	Common	Several	Low reprate X-ray: need to improve charge & emittance
SC Linac	JLab (Early 2000s), and KAERI (2009)		High reprate, short pulses, good emitance
ERL	Proposed	Proposed	Expensive; New tech

Photon Beam Sources	X-ray	Gamma-ray	Comment
Cavity: FEL	Several	Several	High reprate; Medium to high avg power Large beam size
Cavity: Fabry-Perot	Several	Several	High reprate; Medium to high avg power Small beam size possible
External Lasers	Common	Common	Low reprate; Low avg power; Very high peak power possible Small beam size possible

Low-Energy CGS: Storage Ring

Electron beam				
Beam energy	$500 { m MeV}$			
Stored currents	1000 mA			
Bunch filled	24			
Hori./Vert. emittance	7.5/0.75 nm-rad			
Hori./Vert. size (rms)	$212/39~\mu\mathrm{m}$			
Bunch length (rms)	$150 \mathrm{\ ps}$			
Laser beam				
Wavelength	1064 nm			
Intracavity power	100 kW			
Pulse length (rms)	$20 \mathrm{ps}$			
Hori./Vert. size (rms)	$40/40~\mu{ m m}$			
Gamma-ray beam				
Max. energy	$4.43 { m MeV}$			
Collision rate	$121.66 \mathrm{~MHz}$			
Collision angle	6°			
Luminosity	$3.3 \times 10^{36} \mathrm{~cm}^{-2} \mathrm{s}^{-1}$			
Total flux (in 4π solid angle) 2.2×10^{12} //s				
E-beam:	FP cavity: 100 kW			
E = 500 MeV, $I = 1$ A	Beam size: $40/40 \ \mu m$			
Laser wavelength (nm)	$\lambda_1 = 1064 \lambda_2 = 1550$			
Tot. flux (γ /s): θ =6°	2.2×10^{12} 2.8×10^{12}			
Tot. flux (γ/s) : head-on	2.4×10^{13} 3.1×10^{13}			

Whitepaper: "International Workshop on Next Generation Gamma-Ray Source," C.R. Howell *et al.*, J. Phys. G: Nucl. Part. Phys. 49, 010502 (2022).

High-Energy CGS: Storage Ring

Whitepaper: "International Workshop on Next Generation Gamma-Ray Source," C.R. Howell *et al.*, J. Phys. G: Nucl. Part. Phys. 49, 010502 (2022).

 3.4×10^{1} 1.7×10^{12}

Tot. flux (γ /s): θ =6°

HIGS2: Next-Generation Gamma-ray Source

Gamma Factory for CERN

The Gamma Factory proposal for CERN[†]

[†] An Executive Summary of the proposal addressed to the CERN management.

Mieczyslaw Witold Krasny* LPNHE, Universités Paris VI et VII and CNRS-IN2P3, Paris, France

e-Print: 1511.07794 [hep-ex]

~100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁶,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schauman²
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolsitkhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Gamma Factory for CERN

Gamma Factory requirement:

Production, acceleration, and storage of atomic beams in the LHC rings

Extraordinary properties of the CERN-based GF photon source

- <u>1. Point-like, small divergence</u>
- $\Delta z \sim I_{PSI-bunch}, \ \Delta x, \ \Delta y \sim \sigma^{PSI}_{x}, \ ^{PSI}_{y}, \ \Delta(\theta_{x}), \ \Delta(\theta_{y}) \sim 1/\gamma_{L} < 1 \ mrad$

2. Huge jump in intensity:

6–8 orders of magnitude w.r.t. existing (being constructed) γ-sources > 10¹⁸ photons/sec

3. Very wide range of tuneable energy photon beam :

▶ 40 keV – 400 MeV - extending, by a factor of ~10000, the energy range of the FEL photon sources

4. Tuneable polarisation:

- > γ -polarisation transmission from laser photons to the GF γ -beams of up to 99%
- 5. Unprecedented plug power efficiency (energy footprint):
- LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL! (assuming power consumption of 200 MW - CERN and 19 MW - DESY)
- particle physics (precision QED and EW studies, vacuum birefringence, Higgs physics in γγ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, …);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides, ...);
- atomic physics (highly charged atoms, electronic and muonic atoms, pionic and kaonic atoms);
- astrophysics (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, ¹⁶O(γ,α)¹²C reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- **accelerator physics** (beam cooling techniques, low emittance hadronic beams, plasma wake field acceleration, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, neutron sources...);
- applied physics (accelerator driven energy sources, medical isotopes' and isomers' production).

Courtesy of Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

Gamma Factory for CERN

Initial Intensity [10⁹ charges]

Gamma Factory Proof-of-Principle (PoP) SPS Experiment

F-P cavity – "in beam" position

Courtesy of Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP