2D and 3D Imaging by Nuclear Resonance Absorption/Fluorescence Using **Extremely Brilliant Compton Sources**

Trevor Reutershan and Prof. CPJ Barty

Medical Scientist Training Program (MD/PhD) **Department of Physics and Astronomy Barty Research Group**

Nuclear Photonics 2023 : Durham, North Carolina : September 11th, 2023

Newport Beach

Barty Group Labs Lumitron Technologies UCI School of Medicine Physics & Astronomy Beckman Laser Institute

Nuclear Resonance Absorption and Fluorescence

Photon scattering processes with the nucleus

Zilges A, Balabanski DL, Isaak J, Pietralla N. Progress in Particle and Nuclear Physics 122 (2022) 103903

Energy Levels Are Unique to the Isotope

Margraf J, Eckert T, Rittner M, Bauske I, Beck O, Kneissl U, Maser H, Pitz HH, Schiller A, von Brentano P, Fischer R, Herzbert RD, Pietralla N, Zilges A, Friedrichs H. Physical Review C. (1995) 52(5) 2429 Zilges A, Balabanski DL, Isaak J, Pietralla N. Progress in Particle and Nuclear Physics 122 (2022) 103903

A Narrow Phenomenon...

Line widths can be as low as $10^{-6}\Delta E/E$

Margraf J, Eckert T, Rittner M, Bauske I, Beck O, Kneissl U, Maser H, Pitz HH, Schiller A, von Brentano P, Fischer R, Herzbert RD, Pietralla N, Zilges A, Friedrichs H. Physical Review C. (1995) 52(5) 2429 UC 🗱 🕸 😨 National Nuclear Data Center, Brookhaven National Lab, Evaluated Nuclear Structure Data File

$$() = 4.69 \times 10^{-6}$$

How NRF Experiments are Typically Done

1.5 MeV Tungsten Spectrum

How NRF Experiments are Typically Done

Not an ideal source for single resonance line measurements

1.5 MeV Tungsten Spectrum

Laser-Compton Scattering has the Edge

Bremsstrahlung

LCS has narrow bandwidths that make probing these lines much better

$$E_{\gamma} = \frac{4\gamma^2}{1 + \gamma^2 \theta^2 + 4\gamma k_0^- \lambda_c} E_L$$

Reutershan T, Effarah HH, Lagzda A, Barty CPJ. Applied Optics (2022) 61(6):C162:178

Reutershan T, Effarah HH, Lagzda A, Barty CPJ. Applied Optics (2022) 61(6):C162:178

Reutershan T, Effarah HH, Lagzda A, Barty CPJ. Applied Optics (2022) 61(6):C162:178

$$\frac{1}{\omega} = \int \frac{d\sigma}{d\Omega} \delta\left(\omega - \omega_l \frac{\kappa_l}{\kappa}\right) (1 + \beta_0) n_l(x_\mu) n_e(x_\mu) d^4 x_\mu$$

$$\frac{1}{\omega} = \int \frac{d\sigma}{d\Omega} \delta \left(\omega - \omega_l \frac{\kappa_l}{\kappa} \right) (1 + \beta_0) n_l(x_\mu) n_e(x_\mu) d^4 x_\mu$$

$$\int Laser beam$$
properties

$$\frac{1}{\omega} = \int \frac{d\sigma}{d\Omega} \delta \left(\omega - \omega_l \frac{\kappa_l}{\kappa} \right) (1 + \beta_0) n_l(x_\mu) n_e(x_\mu) d^4 x_\mu$$

$$\int \int \mathbf{Laser \ beam}_{\text{properties}} \quad \mathbf{Electron \ beam}_{\text{properties}} \quad \mathbf{UCI} * \mathbf{O} \otimes \mathbf{O}$$

1D Imaging has been Demonstrated

Experiment performed at ESRF with a 10⁻³ bandwidth source.

Jentschel M, Albert F, Buslaps T, Friman-Gayer U, Honkimaki V, Mertes L, Pollit AJ, Mutti P, Pietralla N, Barty CPJ. Applied Optics. Vol 61, No 6 (2022), C125-C132.

This method retains the spatial-energy x-ray spectrum required for accurate simulation.

This method retains the spatial-energy x-ray spectrum required for accurate simulation.

detector

x-ray propagation through object and image generation: Matlab/Geant4 w/ G4NRF

Computational Phantom

4.2 cm water cylinder with Li inserts of varying concentrations.

Bandwidth is Important

Images generated using a dual-energy approach. **Contrast increases with smaller bandwidths.**

GAMS Monochromator

Double crystal monochromator will allow further bandwidth filtering to improve contrast

Speaker: Michael Jentschel

Institue Laue Langevin, Lumitron Technologies Inc.

Combination of a Diffraction Based Ultra-Narrow Band Width Filter with a Laser Compton Photon Source

> Wednesday, 13 September Junior Ballroom, 9:55 AM

Could LCS-NRF be used for Medical Imaging?

PET

We can learn from the PET and SPECT communities.

Seam P, et al. Blood (2007) 110 (10): 3507-3516. Xie Q, (2016); 5(1): 1270

SPECT

Could We Image a Clinically Used Radiotracer?

lsotope	Abundance (%)	Energy (keV)	Integrated σ (eV b)
		109.894	0.25
		1458.7	26.57
F-19	100	1554.038	414.68
		3908.17	38.25
		4556.1	14.07
		669.93	9.86
		962.02	4.98
Cu-63	69.2	1412.16	0.78
		1547	6.31
		2012.92	13.11
		770.64	14.33
		1115.556	7.49
		1623.43	0.62
Cu-65	30.9	1725	6.40
		2107.44	3.48
		2212.84	1.63
		2329.05	12.43
		574.22	4.69
		872.147	9.22
69-69	60.1	1028.59	0.69
04-03		1107.04	9.66
		1723.71	5.90
		1891.64	22.26

Only dipole transitions considered

National Nuclear Data Center, Brookhaven National Lab, Evaluated Nuclear Structure Data File

lsotope	Abundance (%)	Energy (keV)	Integrated σ (eV b)
		389.94	14.41
		511.495	4.47
	39.9	910.16	8.82
		964.66	2.17
Ga-71		1109.31	7.50
<i>Gu-71</i>		1631.4	4.39
		1719.5	8.89
		1752.32	2.20
		1905.36	3.02
		2064.06	2.51
	72.2	151.192	0.07
Rb-85		731.829	0.50
		868.94	1.24
		919.73	3.00
		950.95	0.69
		1175.56	1.92
		1384.24	0.91
Rb-87	27.8	402.588	0.20
		845.44	12.14
		1389.78	4.78
		1463	1.95

Candidate: ¹⁹F

Mass fraction of elements in human body

	Mass		Mass	
Element	Fraction	Element	Fraction	80 -
Oxygen	0.65	Sulfur	2.5 × 10 ⁻³	
Carbon	0.18	Sodium	1.5×10^{-3}	60 -
Hydrogen	0.1	Chlorine	1.5×10^{-3}	<u>a</u>
Nitrogen	0.03	Magnesium	5.0×10^{-4}	ь 40 ·
Calcium	0.014	Iron	6.0×10^{-5}	20 -
Phosphorus	0.011	Fluorine	3.7 × 10 ⁻⁵	20
Potassium	2.0 × 10 ⁻³	Zinc	3.2 × 10 ⁻⁵	0.

National Nuclear Data Center, Brookhaven National Lab, Evaluated Nuclear Structure Data File

Only 5% of total fluorine is in soft tissue.

Candidate ¹⁹F

Candidate ¹⁹F

Substituting a hydroxyl group with a positron emitter

Using NRF, we can image the same molecule, but with a stable isotope!

Transmission Nuclear Resonance Imaging

2D detector

Transmission mode gives differential tomographic reconstruction capability

NR Transmission Image Reconstruction

2D Image

Transmission mode gives differential tomographic reconstruction capability

3D Reconstruction

Fluorescence Nuclear Resonance Imaging

Fluorescence mode enables 3D reconstruction without rotation

NR Fluorescence Image Reconstruction

2D Images

Fluorescence mode enables 3D reconstruction without rotation

3D Reconstruction

NR Fluorescence Image Reconstruction

Fluorescence mode enable

Charest M, Asselin C. Journal of Nuclear Medicine Technology. (2018) 46(2):107-113 Li Y, Jiang L, Wang H, Cai H, Xiang Y, Li L. Radiation Protection Dosimetry. (2019) 187(2):183-190

Dose (mSv)	Time
7 - 9	~30 min
16 - 27	~30 min
9 - 31	~30 min
3.5	< 1 min
9.7	seconds

3D reconstruction without rotation

Conclusion

1) Demonstrated 2D and 3D LCS-NR medical imaging

- 2) Bandwidth is important for signal LCS + monochromator can achieve this
- 3) Pool of isotopes to image Isotope specific tags could be developed
- 4) Dose is comparable to similar imaging modalities

Acknowledgements

Prof. CPJ Barty* Kyle Chesnut Michael Seggebruch Eric Nelson Haytham Effarah **Christine Nguyen**

Dr. Michael Jentschel Dr. Agnese Lagzda Dr. Yoonwoo Hwang Dr. Fred Hartemann Dr. Ferenc Raksi

Medical Scientist Training Program

Extra Viewgraphs

Source Parameters

Electron Beam Parameters		Laser Parameters		
Micro-bunch charge	25 pC	Laser micro-pulse energy	10 mJ	
Pulse structure	1000 micro-bunches/pulse	Laser wavelength	354 nm	
Repetition rate	400 Hz	Repetition rate	400 Hz	
e ⁻ beam energy	30 - 100 MeV	Laser pulse duration	2 ps	
e ⁻ beam energy spread	0.03%	Laser beam spot size	$> 5 \ \mu m$	
RF	11.424 GHz			
e ⁻ beam emittance	0.2 mm mrad	X-ray Characteristics		
e ⁻ beam size at the interaction point / spot size (RMS)	5 μm	Total X-ray flux	> 10 ¹² ph s ⁻¹	
e ⁻ bunch length	2 ps	Tunable energy range	30 keV - 3 MeV	
Interaction angle	π (head-on)	X-ray spot size (RMS)	5 µm	
		Minimum on-axis energy bandwidth (ΔE/E, FWHM)	10-3	

